Что дает факторный анализ. Методы факторного анализа. Основные методы детерминированного факторного анализа

Представляют собой совокупность статистических процедур, направленных на выделение из заданного множества переменных подмножеств переменных, тесно связанных (коррелирующих) между собой. Переменные, входящие в одно подмножество и коррелирующие между собой, но в значительной степени независимые от переменных из других подмножеств, образуют факторы. Цель факторного анализа - идентифицировать явно не наблюдаемые факторы с помощью множества наблюдаемых переменных. Дополнительным способом проверки числа выделенных факторов является вычисление корреляционной матрицы, которая близка исходной, если факторы выделены правильно. Эта матрица называется воспроизведенной корреляционной матрицей. Для того чтобы увидеть, как эта матрица отклоняется от исходной корреляционной матрицы (с которой начинался анализ), можно вычислить разность между ними. Остаточная матрица может указать на "несогласие", т. е. на то, что рассматриваемые коэффициенты корреляции не могут быть получены с достаточной точностью на основе имеющихся факторов. В методах главных компонент и факторного анализа не существует такого внешнего критерия, позволяющего судить о правильности решения. Вторая проблема заключается в том, что после выделения факторов возникает бесконечное множество вариантов вращения, базирующихся на тех же исходных переменных, но дающих разные решения (факторные структуры определяются несколько иным образом). Окончательный выбор между возможными альтернативами внутри бесконечного множества математически равнозначных решений зависит от содержательного осмысления исследователями результатов интерпретации. А поскольку объективного критерия для оценки различных решений нет, предлагаемые обоснования выбора решения могут казаться голословными и неубедительными.


Надо отметить, что четких статистических критериев полноты факторизации не существует. Тем не менее, низкие ее значения, например меньше 0,7, свидетельствуют о желательности сокращения количества признаков или увеличения количества факторов.

Мет Коэффициент взаимосвязи между некоторым признаком и общим фактором, выражающий меру влияния фактора на признак, называется факторной нагрузкой данного признака по данному общему фактору.

Матрица, состоящая из факторных нагрузок и имеющая число столбцов, равное числу общих факторов, и число строк, равное числу исходных признаков, называется факторной матрицей.

Основой для вычисления факторной матрицы является матрица парных коэффициентов корреляции исходных признаков.

Корреляционная матрица фиксирует степень взаимосвязи между каждой парой признаков. Аналогично факторная матрица фиксирует степень линейной связи каждого признака с каждым общим фактором.

Величина факторной нагрузки не превышает по модулю единицы, а знак ее говорит о положительной или отрицательной связи признака с фактором.

Чем больше абсолютная величина факторной нагрузки признака по некоторому фактору, тем в большей степени этот фактор определяет данный признак.

Значение факторной нагрузки по некоторому фактору, близкое к нулю, говорит о том, что этот фактор практически на данный признак не влияет.

Факторная модель дает возможность вычислять вклады факторов в общую дисперсию всех признаков. Суммируя квадраты факторных нагрузок для каждого фактора по всем признакам, получаем его вклад в общую дисперсию системы признаков: чем выше доля этого вклада, тем более значимым, существенным является данный фактор.

При этом можно выявить и оптимальное количество общих факторов, достаточно хорошо описывающих систему исходных признаков.

Значение (мера проявления) фактора у отдельного объекта называется факторным весом объекта по данному фактору. Факторные веса позволяют ранжировать, упорядочить объекты по каждому фактору.

Чем больше факторный вес некоторого объекта, тем больше в нем проявляется та сторона явления или та закономерность, которая отражается данным фактором.

Факторные веса могут быть как положительными, так и отрицательными.

В силу того, что факторы являются стандартизованными величинами со средним значением, равным нулю, факторные веса, близкие к нулю, говорят о средней степени проявления фактора, положительные – о том, что эта степень выше средней, отрицательные – о том. ч то она ниже средней.

Практически, если число уже найденных главных компонент (или факторов) не больше, чем m /2, объясняемая ими дисперсия не менее 70%, а следующая компонента дает вклад в суммарную дисперсию не более 5%, факторная модель считается достаточно хорошей.

Если Вы хотите найти значения факторов и сохранить их в виде дополнительных переменных задействуйте выключатель Scores... (Значения) Факторное значение, как правило, лежит в пределах -3 до +3.

Факторный анализ - более мощный и сложный аппарат, чем метод главных

компонент, поэтому он применяется в том случае, если результаты

компонентного анализа не вполне устраивают. Но поскольку эти два метода

решают одинаковые задачи, необходимо сравнить результаты компонентного и


факторного анализов, т. е. матрицы нагрузок, а также уравнения регрессии на

главные компоненты и общие факторы, прокомментировать сходство и различия

результатов.

Максимально возможное количество факторов m при заданном числе признаков р определяется неравенством

(р+m)<(р-m)2,

В завершение всей процедуры факторного анализа с помощью математических преобразований выражают факторы fj через исходные признаки, то есть получают в явном виде параметры линейной диагностической модели.

Методы главных компонент и факторного анализа представляют собой совокупность статистических процедур, направленных на выделение из заданного множества переменных подмножеств переменных, тесно связанных (коррелирующих) между собой. Переменные, входящие в одно подмножество и коррелирующие между собой, но в значительной степени независимые от переменных из других подмножеств, образуют факторы1 . Цель факторного анализа - идентифицировать явно не наблюдаемые факторы с помощью множества наблюдаемых переменных.

Общее выражение для j -го фактора может быть записано так:

где Fj (j изменяется от 1 до k ) - это общие факторы, Ui - характерный, Aij - константы, используемые в линейной комбинации k факторов. Характерные факторы могут не коррелировать друг с другом и с общими факторами.

Процедуры факторно-аналитической обработки, применяемые к полученным данным, различны, но структура (алгоритм) анализа состоит из одних и тех же основных этапов: 1. Подготовка исходной матрицы данных. 2. Вычисление матрицы взаимосвязей признаков. 3. Факторизация (при этом необходимо указать количество факторов, выделяемых в ходе факторного решения, и метод вычисления). На этом этапе (как и на следующем) можно также оценить, насколько хорошо полученное факторное решение сближает исходные данные. 4. Вращение - преобразование факторов, облегчающее их интерпретацию. 5. Подсчет факторных значений по каждому фактору для каждого наблюдения. 6. Интерпретация данных .

изобретение факторного анализа было связано именно с необходимостью одновременного анализа большого количества коэффициентов корреляции различных шкал между собой. Одна из проблем, связанных с методами главных компонент и факторного анализа заключается в том, что критериев, которые позволяли бы проверить правильность найденного решения, не существует. Например, при регрессионном анализе можно сопоставить показатели по зависимым переменным, полученные эмпирическим путем, с показателями, вычисленными теоретически на основе предлагаемой модели, и использовать корреляцию между ними как критерий правильности решения по схеме корреляционного анализа для двух наборов переменных. В дискриминантном анализе правильность решения базируется на том, насколько точно предсказана принадлежность испытуемых к тем или иным классам (если сравнивать с реальной принадлежностью, имеющей место в жизни). К сожалению, в методах главных компонент и факторного анализа не существует такого внешнего критерия, позволяющего судить о правильности решения, Вторая проблема заключается в том, что после выделения факторов возникает бесконечное множество вариантов вращения, базирующихся на тех же исходных переменных, но дающих разные решения (факторные структуры определяются несколько иным образом). Окончательный выбор между возможными альтернативами внутри бесконечного множества математически равнозначных решений зависит от содержательного осмысления исследователями результатов интерпретации. А поскольку объективного критерия для оценки различных решений нет, предлагаемые обоснования выбора решения могут казаться голословными и неубедительными.

Третья проблема заключается в том, что факторный анализ довольно часто применяют с целью спасти плохо продуманное исследование, когда становится ясно, что ни одна статистическая процедура не дает желаемого результата. Мощь методов главных компонент и факторного анализа позволяет из хаотичной информации выстроить упорядоченную концепцию (что и создает им сомнительную репутацию).

Вторая группа терминов относится к матрицам, которые строятся и интерпретируются как часть решения. Поворот факторов - это процесс поиска наиболее легко интерпретируемого решения для данного количества факторов. Существуют два основных класса поворотов: ортогональный и косоугольный . В первом случае все факторы априорно выбираются ортогональными (не коррелирующими друг с другом) и строится матрица факторных нагрузок , представляющая собой матрицу взаимосвязей между наблюдаемыми переменными и факторами. Величина нагрузок отражает степень связи каждой наблюдаемой переменной и каждым фактором и интерпретируется как коэффициент корреляции между наблюдаемой переменной и фактором (латентной переменной), а потому изменяется в пределах от -1 до 1. Решение, полученное после ортогонального поворота, интерпретируется на основе анализа матрицы факторных нагрузок путем выявления того, с каким из факторов в максимальной степени связана та или иная наблюдаемая переменная. Таким образом, каждый фактор оказывается заданным группой первичных переменных, имеющих по нему наибольшие факторные нагрузки.

Если выполняется косоугольное вращение (т. е. априорно допускается возможность корреляции факторов между собой), то строится еще несколько дополнительных матриц. Матрица факторной корреляции содержит корреляции между факторами. Матрица факторных нагрузок , упомянутая выше, расщепляется на две: структурную матрицу взаимосвязей между факторами и переменными и матрицу факторного отображения , выражающую линейные взаимосвязи между каждой наблюдаемой переменной и каждым фактором (без учета влияния наложения одних факторов на другие, выражаемого корреляцией факторов между собой). После косоугольного вращения интерпретация факторов происходит на основе группировки первичных переменных (подобно тому, как было описано выше), но уже с использованием в первую очередь матрицы факторного отображения.

Наконец, для обоих поворотов вычисляется матрица коэффициентов факторных значений , используемая в специальных уравнениях регрессионного типа для вычисления факторных значений (факторных баллов, показателей по факторам) для каждого наблюдения на основе значений для них первичных переменных.

Сравнивая методы главных компонент и факторного анализа, отметим следующее. В ходе выполнения анализа по методу главных компонент строится модель для наилучшего объяснения (максимального воспроизведения) полной дисперсии экспериментальных данных, полученных по всем переменным. В результате выделяются «компоненты». При факторном анализе предполагается, что каждая переменная объясняется (детерминируется) некоторым количеством гипотетических общих факторов (влияющих на все переменные) и характерными факторами (для каждой переменной своими). И вычислительные процедуры выполняются таким образом, чтобы освободиться как от дисперсии, полученной в результате ошибки измерения, так и от дисперсии, объясняемой специфичными факторами, и анализировать только дисперсии, объясняемые гипотетически существующими общими факторами. В результате получаются объекты, называемые факторами. Однако, как уже упоминалось, с содержательно-психологической точки зрения эта разница в математических моделях существенного значения не имеет, поэтому в дальнейшем, если не дается особых пояснений, о каком именно случае идет речь, мы будем использовать термин «фактор» как по отношению к компонентам, так и по отношению к факторам.

Размеры выборки и пропущенные данные. Чем больше выборка, тем больше достоверность показателей взаимосвязи. Поэтому очень важно иметь достаточно большую выборку. Требуемый размер выборки также зависит от степени взаимосвязи показателей в популяции в целом и количества факторов: при сильной и достоверной взаимосвязи и небольшом количестве четко очерченных факторов будет достаточно и не очень большой выборки.

Так, выборка, размер которой 50 испытуемых, оценивается как очень плохая, 100 - плохая, 200 - средняя, 300 - хорошая, 500 - очень хорошая и 1000 - превосходная (Comrey, Lee , 1992). Исходя из этих соображений, в качестве общего принципа можно порекомендовать исследовать выборки не менее 300 испытуемых. Для решения, базирующегося на достаточном количестве маркерных переменных с высокими факторными нагрузками (>0.80) достаточно выборки порядка 150 испытуемых (Guadagnoli, Velicer , 1988). нормальность для каждой переменной в отдельности проверяется по асимметрии (насколько кривая изучаемого распределения сдвинута вправо или влево по сравнению с теоретически нормальной кривой) и эксцессу (степень вытянутости вверх или прогнутости вниз «колокола» имеющегося распределения, визуально представленного в частотной диаграмме, в сравнении с «колоколом» графика плотности, характерным для нормального распределения). Если переменная имеет существенные асимметрию и эксцесс, то ее можно преобразовать, введя новую переменную (как однозначную функцию от рассматриваемой) таким образом, чтобы эта новая переменная была распределена нормально (подробнее об этом см.: Tabachnik, Fidell , 1996, гл. 4).

Собственные векторы и соответствующие собственные числа
для рассматриваемого учебного примера

Собственный вектор 1

Собственный вектор 2

Собственное значение 1

Собственное значение 2

Поскольку корреляционная матрица диагонализируема, то для получения результатов факторного анализа к ней можно применять матричную алгебру собственных векторов и собственных величин (см. Приложение 1). Если матрица диагонализируема, то вся существенная информация о факторной структуре содержится в ее диагональной форме. В факторном анализе собственные числа соответствуют дисперсии, объясняемой факторами. Фактор с наибольшей собственной величиной объясняет наибольшую дисперсию и т. д., пока не доходит до факторов с небольшими или отрицательными собственными величинами, которые обычно не учитываются при анализе. Матрица факторных нагрузок является матрицей взаимосвязей (интерпретируемых как коэффициенты корреляций) между факторами и переменными. Первый столбец - это корреляции между первым фактором и каждой переменной по очереди: стоимость путевки (-.400), комфортабельность комплекса (.251), температура воздуха (.932), температура воды (.956). Второй столбец - это корреляции между вторым фактором и каждой переменной: стоимость путевки (.900), комфортабельность комплекса (-.947), температура воздуха (.348), температура воды (.286). Фактор интерпретируется на основе сильно связанных с ним (т. е. имеющих по нему высокие нагрузки) переменных. Так, первый фактор главным образом «климатический» (температура воздуха и воды ), в то время как второй «экономический» (стоимость путевки и комфортабельность комплекса ).

Интерпретируя эти факторы, следует обратить внимание на то, что переменные, имеющие высокие нагрузки по первому фактору (температура воздуха и температура воды ), взаимосвязаны положительно, тогда как переменные, имеющие высокие нагрузки по второму фактору (стоимость путевки и комфортабельность комплекса ), взаимосвязаны отрицательно (от дешевого курорта нельзя ожидать большой комфортабельности). Первый фактор называется униполярным (все переменные сгруппированы на одном полюсе), а второй - биполярным (переменные распались на две противоположные по смыслу группы - два полюса). Переменные, имеющие факторные нагрузки со знаком «плюс», образуют положительный полюс, а со знаком «минус» - отрицательный. При этом названия полюсов «положительный» и «отрицательный» при интерпретации фактора не имеют оценочного смысла «плохой» и «хороший». Выбор знака происходит во время вычислений случайным образом. Ортогональное вращение

Вращение обычно применяется после выделения факторов для максимизации высоких корреляций и минимизации низких. Существуют многочисленные методы вращения, но чаще всего используется поворот варимакс , представляющий собой процедуру максимизации дисперсий. Этот поворот максимизирует дисперсии факторных нагрузок, делая высокие нагрузки выше, а низкие ниже для каждого из факторов. Эта цель достигается с помощью матрицы преобразования Λ:

Матрица преобразования - это матрица синусов и косинусов угла Ψ, на который выполняется поворот. (Отсюда и название преобразования - поворот , потому что с геометрической точки зрения происходит поворот осей вокруг начала координат факторного пространства.) Выполнив поворот и получив матрицу факторных нагрузок после поворота, можно проанализировать серию других показателей (см. табл. 4). Общность переменной - это дисперсия, рассчитанная с помощью факторных нагрузок. Это квадратичная множественная корреляция переменной, предсказанная факторной моделью. Общность вычисляется как сумма квадратов факторных нагрузок (СКН) для переменной по всем факторам. В табл. 4 общность для стоимости путевки равна (-.086)2+(.981)2 = .970, т. е. 97% дисперсии стоимости путевки объясняется факторами 1 и 2.

Доля дисперсии фактора по всем переменным - это СКН по фактору, деленная на количество переменных (в случае ортогонального вращения)7 . Для первого фактора доля дисперсии равна:

[(-.086)2+(-.071)2+(.994)2+(.997)2]/4 = 1.994/4 = .50,

т. е. первый фактор объясняет 50% дисперсии переменных. Второй фактор объясняет 48% дисперсии переменных и (в силу ортогональности вращения) два фактора в сумме объясняют 98% дисперсии переменных.

Связь между факторными нагрузками, общностями, СКН,
дисперсией и ковариацией ортогональных факторов после поворота

Общности (h2 )

Стоимость путевки

∑a2 =.970

Уровень комфорта

∑a2 =.960

Температура воздуха

∑a2 =.989

Температура воды

∑a2 =.996

∑a2 =1.994

∑a2 =1.919

Доля дисперсии

Доля ковариации

Доля дисперсии решения, объясняемая фактором, - доля ковариации - это СКН для фактора, деленная на сумму общностей (сумму СКН по переменным). Первый фактор объясняет 51% дисперсии решения (1.994/3.915); второй - 49% (1.919/3.915); два фактора вместе объясняют всю ковариацию.

Eigenval – отражают величину дисперсии соответствующего количества факторов. В качестве упражнения рекомендуем выписать все эти формулы для получения расчетных значений по переменным. Например, для первого респондента:

1.23 = -.086(1.12) + .981(-1.16)

1.05 = -.072(1.12) - .978(-1.16)

1.08 = .994(1.12) + .027(-1.16)

1.16 = .997(1.12) - .040(-1.16)

Или в алгебраической форме:

Z стоимости путевки = a 11F 1 + a 12F 2

Z комфортабельности комплекса = a 2lF 1 + a 22F 2

Z температуры воздуха = a 31F 1 + a 32F 2

Z температуры воды = a 41F 1 + a 42F 2

Чем больше нагрузка, тем с большей уверенностью можно считать, что переменная определяет фактор. Комри и Ли (Comrey, Lee , 1992) предполагают, что нагрузки, превышающие 0.71 (объясняет 50% дисперсии), - превосходные, 0% дисперсии) - очень хорошие, 0%) - хорошие, 0%) - удовлетворительные и 0.32 (объясняет 10% дисперсии) - слабые.

Предположим, что вы проводите (до некоторой степени "глупое") исследование, в котором измеряете рост ста людей в дюймах и сантиметрах. Таким образом, у вас имеются две переменные. Если далее вы захотите исследовать, например, влияние различных пищевых добавок на рост, будете ли вы продолжать использовать обе переменные? Вероятно, нет, т. к. рост является одной характеристикой человека, независимо от того, в каких единицах он измеряется.

Зависимость между переменными можно обнаружить с помощью диаграммы рассеяния . Полученная путем подгонки линия регрессии дает графическое представление зависимости. Если определить новую переменную на основе линии регрессии, изображенной на этой диаграмме, то такая переменная будет включить в себя наиболее существенные черты обеих переменных. Итак, фактически, вы сократили число переменных и заменили две одной. Отметим, что новый фактор (переменная) в действительности является линейной комбинацией двух исходных переменных.

Введение в факторный анализ

В течение последних лет факторный анализ нашел свое применение среди широкого круга исследователей в основном благодаря развитию высокоскоростных компьютеров и пакетов статистических программ (например, DATATEXT, BMD, OSIRIS, SAS и SPSS). Это также коснулось большой группы пользователей, не имеющих соответствующей математической подготовки, но, тем не менее, заинтересованных в использовании потенциальных возможностей факторного анализа в своих исследованиях (Harman, 1976; Horst, 1965; Lawley и Maxswel, 1971; Mulaik, 1972).

Факторный анализ предполагает, что изучаемые переменные представляют собой линейную комбинацию некоторых скрытых (латентных) ненаблюдаемых факторов. Иными словами, существует система факторов и система изучаемых переменных. Определенная зависимость между этими двумя системами позволяет посредством факторного анализа с учетом имеющейся зависимости получать выводы по изучаемым переменным (факторам). Логическая сущность этой зависимости состоит в том, что каузальная система факторов (система независимых и зависимых переменных) всегда имеет уникальную корреляционную систему изучаемых переменных, а не наоборот. Только при жестко ограниченных условиях, налагаемых на факторный анализ, возможна недвусмысленная интерпретация каузальных структур по факторам на наличие корреляции между изучаемыми переменными. Кроме этого, существуют проблемы и другой природы. Например, при сборе эмпирических данных возможно допущение разного рода ошибок и неточностей, что в свою очередь затрудняет работу по выделению скрытых ненаблюдаемых параметров и их дальнейшего исследования.

Что же такое факторный анализ? Факторный анализ относится к множеству статистических техник, основная задача которых состоит в представлении множества изучаемых признаков в виде сокращенной системы гипотетических переменных. Факторный анализ - исследовательский эмпирический метод, который преимущественно находит свое применение в социальных и психологических дисциплинах.

В качестве примера использования факторного анализа можно рассмотреть изучение свойств личности с помощью психологических тестов. Свойства личности не поддаются прямому измерению, о них можно судить только на основании поведения человека, ответов на те или иные вопросы и т.д. Для объяснения собранных эмпирических данных их результаты подвергаются факторному анализу, который и позволяет выявить те личностные свойства, которые оказывали влияние на поведение испытуемых в проведенных опытах.

Первым этапом факторного анализа, как правило, является выбор новых признаков, которые являются линейными комбинациями прежних и «вбирают» в себя большую часть общей изменчивости наблюдаемых данных, а поэтому передают большую часть информации, заключенной в первоначальных наблюдениях. Обычно это осуществляют с помощью метода главных компонент, хотя иногда используют и другие приемы (например, метод главных факторов, метод максимального правдоподобия).

    Метод главных компонент– статистический прием, позволяющий преобразовывать исходные переменные в их линейную комбинацию (GeorgH.Dunteman). Цель метода – получить сокращенную систему исходных данных, которая намного проще для понимания и дальнейшей статистической обработки. Этот подход был предложен Пирсоном (1901) и независимо от него получил свое дальнейшее развитие у Хотеллинга (1933). Автор пытался минимизировать использование матричной алгебры при работе с данным методом.

Основная цель метода главных компонент – выделение первичных факторов и определение минимального числа общих факторов, которые удовлетворительно воспроизводят корреляции между изучаемыми переменными. Результат данного шага – матрица коэффициентов факторных нагрузок, представляющих собой в ортогональном случае коэффициенты корреляции между переменными и факторами. При определении числа выделяемых факторов используется следующий критерий: выделяются только факторы с собственными значениями больше указанной константы (как правило, единицы).

Однако обычно факторы, полученные методом главных компонент, не поддаются достаточно наглядной интерпретации. Поэтому следующим шагом факторного анализа является преобразование (вращение) факторов таким образом, чтобы облегчить их интерпретацию. Вращение факторов состоит в нахождении наиболее простой факторной структуры, то есть такого варианта оценки факторных нагрузок и остаточных дисперсий, который и дает возможность содержательно интерпретировать общие факторы и нагрузки.

    Наиболее часто исследователями в качестве метода вращения используется метод варимакс. Это метод, позволяющий, с одной стороны, за счет минимизации разброса квадратов нагрузок для каждого фактора, получить упрощенную факторную структуру за счет увеличения больших и уменьшения малых факторных нагрузок, с другой стороны.

Итак, основные цели факторного анализа:

    сокращение числа переменных (редукция данных);

    определение структуры взаимосвязей между переменными, т.е. классификация переменных .

Поэтому факторный анализ используется или как метод сокращения данных или как метод классификации.

Практические примеры и советы по применению факторного анализа можно, найти в книге Стивенса (Stevens, 1986); более подробное описание приводят Кули и Лонес (Cooley, Lohnes, 1971); Харман (Harman, 1976); Ким и Мюллер (Kim, Mueller, 1978a, 1978b); Лоули и Максвелл (Lawley, Maxwell, 1971); Линдеман, Меренда и Голд (Lindeman, Merenda, Gold, 1980); Моррисон (Morrison, 1967) и Мулэйк (Mulaik, 1972). Интерпретация вторичных факторов в иерархическом факторном анализе, как альтернатива традиционному вращению факторов, дана Верри (Wherry, 1984).

Вопросы подготовки данных для применения

факторного анализа

Рассмотрим ряд вопросов и кратких ответов в рамках использования факторного анализа.

    Какой уровень измерений требует факторный анализ или, иными словами, в каких шкалах измерений должны представляться данные для факторного анализа?

Факторный анализ требует, чтобы переменные были представлены в интервальной шкале (Stevens, 1946) и отвечали нормальному распределению. Это требование предполагает также, что в качестве входных данных используются ковариационные или корреляционные матрицы.

    Должен ли исследователь избегать использования факторного анализа, когда метрическая основа переменных определена неточно, т.е. данные представлены в порядковой шкале?

Нет необходимости. Многие переменные, представляющие, например, измерения мнений испытуемых по большому количеству тестов, не имеют точно установленной метрической базы. Однако, в общем, предполагается, что многие «порядковые переменные» могут содержать числовые значения, не искажающие и даже сохраняющие основные свойства изучаемого признака. Задачи исследователя: а) правильно определить число рефлексивно выделяемых порядков (уровней); б) учесть, что сумма допущенных искажений будет включена в корреляционную матрицу, являющуюся основой входных данных факторного анализа; в) коэффициенты корреляции закрепляются в качестве «порядковых» искажений в измерениях (Labovitz, 1967, 1970;Kim, 1975).

Долгое время считалось, что искажения назначаются числовым значениям именно порядковых категорий. Однако это необоснованно, поскольку и для метрических величин возможны искажения, пусть даже минимальные, в процессе проведения эксперимента. В факторном анализе результаты зависят от возможного допущения ошибок, получаемых в процессе измерения, а не их происхождения и соотнесения к данным определенного типа шкал.

    Можно ли использовать факторный анализ для номинальных (дихотомических) переменных?

Многие исследователи утверждают, что использовать факторный анализ для номинальных переменных очень удобно. Во-первых, дихотомические значения (значения, равные «0» и «1») исключают выбор каких-либо иных, отличных от них. Во-вторых, как результат, коэффициент связи является эквивалентом коэффициента корреляции Пирсона, который и выступает в качестве числового значения переменной для факторного анализа.

Однако однозначно положительного ответа на данный вопрос нет. Дихотомические переменные сложно выразить в рамках аналитической факторной модели: каждая переменная имеет значение весовой нагрузки, по крайней мере, двух основных факторов - общего и частного (Kim,Muller). Даже если эти факторы имеют два значения (что довольно редко встречается в реальных факторных моделях), то итоговые результаты в наблюдаемых переменных должны содержать, как минимум, четыре различных значения, которые, в свою очередь, и оправдывают противоречивость использования номинальных переменных. Поэтому факторный анализ для таких переменных используется с целью получения ряда эвристических критериев.

    Сколько должно быть переменных для каждого гипотетически построенного фактора?

Предполагается, что для каждого фактора должно быть, по крайней мере, три переменные. Но это требование опускается, если факторный анализ используется для подтверждения какой-либо гипотезы. В общем, исследователи едины в том, что необходимо иметь, по крайней мере, вдвое больше переменных, чем факторов.

Еще один момент касательно данного вопроса. Чем больше размер выборки, тем достовернее значение критерия ХИ -квадрат. Результаты считаются статистически значимыми, если выборка включает как минимум 51 наблюдение. Таким образом:

N-n-150,(3.33)

где N – размер выборки (число измерений),

n – количество переменных (Lawley, Maxwell, 1971).

Это, конечно, только общее правило.

    Какой смысл имеет знак факторной нагрузки?

Сам знак не имеет существенного значения и не существует пути для оценки значимости связи между переменной и фактором. Однако знаки переменных, входящих в фактор, имеют специфическое значение относительно знаков других переменных. Различные знаки просто означают, что переменные связаны с фактором в противоположных направлениях.

Например, по результатам факторного анализа было получено, что для пары качеств открытый-замкнутый (многофакторный опросник Кетелла) имеют место соответственно положительная и отрицательная весовые нагрузки. Тогда говорят, что доля качестваоткрытый, в выделенном факторе больше, чем доля качествазамкнутый.

Главные компоненты и факторный анализ

    Факторный анализ как метод редукции данных

Предположим, что проводится (до некоторой степени "глупое") исследование, в котором измеряется рост ста людей в метрах и сантиметрах. Таким образом, имеются две переменные. Если далее исследовать, например, влияние разных пищевых добавок на рост, будет ли целесообразным использовать обе переменные? Вероятно, нет, т.к. рост является одной характеристикой человека, независимо от того, в каких единицах он измеряется.

Предположим, что измеряется удовлетворенность людей жизнью с помощью опросника, содержащего различные пункты. Задаются, например, вопросы: удовлетворены ли люди своим хобби (пункт 1) и как интенсивно они им занимаются (пункт 2). Результаты преобразуются так, что средние по уровню ответы (например, для удовлетворенности) соответствуют значению 100, в то время как ниже и выше средних ответов расположены меньшие и большие значения, соответственно. Две переменные (ответы на два разных пункта) коррелированы между собой. Из высокой коррелированности двух этих переменных можно сделать вывод об избыточности двух пунктов опросника. Это, в свою очередь, позволяет осуществить объединение двух переменных в один фактор.

Новая переменная (фактор) будет включать в себя наиболее существенные черты обеих переменных. Итак, фактически, выполнено сокращение исходного числа переменных и осуществлена замена двух переменных одной. Отметим, что новый фактор (переменная) в действительности является линейной комбинацией двух исходных переменных.

Пример, в котором две коррелированные переменные объединены в один фактор, показывает главную идею факторного анализа или, более точно, анализа главных компонент. Если же пример с двумя переменными распространить на большее число переменных, то вычисления становятся сложнее, однако основной принцип представления двух или более зависимых переменных одним фактором остается в силе.

    Метод главных компонент

Анализ главных компонент является методом сокращения или редукции данных, т.е. методом сокращения числа переменных. Возникает естественный вопрос: сколько факторов следует выделять? Отметим, что в процессе последовательного выделения факторов они включают в себя все меньше и меньше изменчивости. Решение о том, когда следует остановить процедуру выделения факторов, главным образом зависит от точки зрения на то, что считать малой "случайной" изменчивостью. Это решение достаточно произвольно, однако имеются некоторые рекомендации, позволяющие рационально выбрать число факторов (см. раздел Собственные значения и число выделяемых факторов ).

В случае, когда имеются более двух переменных, можно считать, что они определяют трехмерное "пространство" точно так же, как две переменные определяют плоскость. Если имеется три переменные, то можно построить трехмерную диаграмму рассеяния (см. рис. 3.10).

Рис. 3.10. Трехмерная диаграмма рассеяния признака

Для случая более трех переменных, становится невозможным представить точки на диаграмме рассеяния, однако логика вращения осей с целью максимизации дисперсии нового фактора остается прежней.

После того, как найдена линия, для которой дисперсия максимальна, вокруг нее остается некоторый разброс данных и процедуру естественно повторить. В анализе главных компонент именно так и делается: после того, как первый фактор выделен , то есть, после того, как первая линия проведена, определяется следующая линия, максимизирующая остаточную вариацию (разброс данных вокруг первой прямой), и т.д. Таким образом, факторы последовательно выделяются один за другим. Так как каждый последующий фактор определяется так, чтобы максимизировать изменчивость, оставшуюся от предыдущих, то факторы оказываются независимыми друг от друга (некоррелированными или ортогональными ).

    Собственные значения и число выделяемых факторов

Рассмотрим некоторые стандартные результаты анализа главных компонент. При повторных вычислениях выделяются факторы с все меньшей и меньшей дисперсией. Для простоты изложения считают, что обычно работа начинается с матрицы, в которой дисперсии всех переменных равны 1,0. Поэтому общая дисперсия равна числу переменных. Например, если имеется 10 переменных и дисперсия каждой из них равна 1, то наибольшая изменчивость, которая потенциально может быть выделена, равна 10 раз по 1.

Предположим, что при изучении степени удовлетворенности жизнью включено 10 пунктов для измерения различных аспектов удовлетворенности домашней жизнью и работой. Дисперсия, объясненная последовательными факторами, представлена в таблице 3.14:

Таблица 3. 14

Таблица собственных значений

STATISTICA ФАКТОРНЫЙ АНАЛИЗ

Собственные значения (factor.sta) Выделение: Главные компоненты

Значение

Собственные значения

% общей дисперсии

Кумулят. собств. знач.

Кумулят. %

Во втором столбце таблицы 3. 14. (Собственные значения) представлена дисперсия нового, только что выделенного фактора. В третьем столбце для каждого фактора приводится процент от общей дисперсии (в данном примере она равна 10) для каждого фактора. Как видно, первый фактор (значение 1) объясняет 61 процент общей дисперсии, фактор 2 (значение 2) – 18 процентов, и т.д. Четвертый столбец содержит накопленную (кумулятивную) дисперсию.

Итак, дисперсии, выделяемые факторами, названы собственными значениями . Это название происходит из использованного способа вычисления.

Как только получена информация о том, сколько дисперсии выделил каждый фактор, можно возвратиться к вопросу о том, сколько факторов следует оставить. Как говорилось выше, по своей природе это решение произвольно. Однако имеются некоторые общеупотребительные рекомендации, и на практике следование им дает наилучшие результаты.

Критерии выделения факторов

    Критерий Кайзера. Сначала отбираются только те факторы, собственные значения которых больше 1. По существу, это означает, что если фактор не выделяет дисперсию, эквивалентную, по крайней мере, дисперсии одной переменной, то он опускается. Этот критерий предложен Кайзером (Kaiser, 1960), и является наиболее широко используемым. В приведенном выше примере (см. табл. 3.14) на основе этого критерия следует сохранить только 2 фактора (две главные компоненты).

    Критерий каменистой осыпи является графическим методом, впервые предложенным Кэттелем (Cattell, 1966). Он позволяет изобразить собственные значения в виде простого графика:

Рис. 3. 11. Критерий каменистой осыпи

Оба критерия были изучены подробно Брауном (Browne, 1968), Кэттелем и Джасперсом (Cattell, Jaspers, 1967), Хакстианом, Рожерсом и Кэттелем (Hakstian, Rogers, Cattell, 1982), Линном (Linn, 1968), Тюкером, Купманом и Линном (Tucker, Koopman, Linn, 1969). Кэттель предложил найти такое место на графике, где убывание собственных значений слева направо максимально замедляется. Предполагается, что справа от этой точки находится только «факториальная осыпь» («осыпь» – геологический термин, обозначающий обломки горных пород, скапливающиеся в нижней части скалистого склона). В соответствии с этим критерием можно оставить в рассмотренном примере 2 или 3 фактора.

Какому критерию все-таки следует отдавать предпочтение на практике?Теоретически, можно вычислить характеристики путем генерации случайных данных для конкретного числа факторов. Тогда можно увидеть, обнаружено с помощью используемого критерия достаточно точное число существенных факторов или нет. С использованием этого общего метода первый критерий (критерий Кайзера ) иногда сохраняет слишком много факторов, в то время как второй критерий (критерий каменистой осыпи ) иногда сохраняет слишком мало факторов; однако оба критерия вполне хороши при нормальных условиях, когда имеется относительно небольшое число факторов и много переменных.

На практике возникает важный дополнительный вопрос, а именно: когда полученное решение может быть содержательно интерпретировано. Поэтому обычно исследуется несколько решений с большим или меньшим числом факторов, и затем выбирается одно наиболее "осмысленное". Этот вопрос далее будет рассматриваться в рамках вращений факторов.

    Общности

На языке факторного анализа доля дисперсии отдельной переменной, принадлежащая общим факторам (и разделяемая с другими переменными) называется общностью . Поэтому дополнительной работой, стоящей перед исследователем при применении этой модели, является оценка общностей для каждой переменной, т.е. доли дисперсии, которая является общей для всех пунктов. Тогда доля дисперсии , за которую отвечает каждый пункт, равна суммарной дисперсии, соответствующей всем переменным, минус общность (Harman, Jones, 1966).

    Главные факторы и главные компоненты

Термин факторный анализ включает как анализ главных компонент, так и анализ главных факторов. Предполагается, что, в целом, известно сколько факторов следует выделить. Можно узнать (1) значимость факторов, (2) можно ли интерпретировать их разумным образом и (3) как это сделать. Чтобы проиллюстрировать, каким образом это может быть сделано, производятся действия "в обратном порядке", то есть, начинают с некоторой осмысленной структуры, а затем смотрят, как она отражается на результатах.

Основное различие двух моделей факторного анализа состоит в том, что в анализе главных компонент предполагается, что должна быть использована вся изменчивость переменных, тогда как в анализе главных факторов используется только изменчивость переменной, общая и для других переменных.

В большинстве случаев эти два метода приводят к весьма близким результатам. Однако анализ главных компонент часто более предпочтителен как метод сокращения данных, в то время как анализ главных факторов лучше применять с целью определения структуры данных.

Факторный анализ как метод классификации данных

    Корреляционная матрица

Первый этап факторного анализа предусматривает вычисление корреляционной матрицы (в случае нормального выборочного распределения). Вернемся к примеру об удовлетворенности и рассмотрим корреляционную матрицу для переменных, относящихся к удовлетворенности на работе и дома.

ФАКТОРНЫЙ АНАЛИЗ

Идея факторного анализа

При исследовании сложных объектов, явлений, систем факторы, определяющие свойства этих объектов, очень часто невозможно измерить непосредственно, а иногда неизвестно даже их число и смысл. Но для измерения могут быть доступны другие величины, так или иначе зависящие от интересующих нас факторов. Причем, когда влияние неизвестного интересующего нас фактора проявляется в нескольких измеряемых признаках или свойствах объекта, эти признаки могут обнаруживать тесную связь между собой и общее число факторов может быть гораздо меньше, чем число измеряемых переменных.

Для выявления факторов, определяющих измеряемые признаки объектов, используются методы факторного анализа

В качестве примера применения факторного анализа можно указать изучение свойств личности на основе психологических тестов. Свойства личности не поддаются прямому измерению. О них можно судить только по поведению человека или характеру ответов на вопросы. Для объяснения результатов опытов их подвергают факторному анализу, который и позволяет выявить те личностные свойства, которые оказывают влияние на поведение индивидуума.
В основе различных методов факторного анализа лежит следующая гипотеза: наблюдаемые или измеряемые параметры являются лишь косвенными характеристиками изучаемого объекта, в действительности существуют внутренние (скрытые, латентные, не наблюдаемые непосредственно) параметры и свойства, число которых мало и которые определяют значения наблюдаемых параметров. Эти внутренние параметры принято называть факторами.

Цель факторного анализа – сконцентрировать исходную информацию, выражая большое число рассматриваемых признаков через меньшее число более ёмких внутренних характеристик явления, которые, однако, не поддаются непосредственному измерению

Установлено, что выделение и последующее наблюдение за уровнем общих факторов даёт возможность обнаруживать предотказные состояния объекта на очень ранних стадиях развития дефекта. Факторный анализ позволяет отслеживать стабильность корреляционных связей между отдельными параметрами. Именно корреляционные связи между параметрами, а также между параметрами и общими факторами содержат основную диагностическую информацию о процессах. Применение инструментария пакета Statistica при выполнении факторного анализа исключает необходимость использования дополнительных вычислительных средств и делает анализ наглядным и понятным для пользователя.

Результаты факторного анализа будут успешными, если удается дать интерпретацию выявленных факторов, исходя из смысла показателей, характеризующих эти факторы. Данная стадия работы весьма ответственная; она требует чёткого представления о содержательном смысле показателей, которые привлечены для анализа и на основе которых выделены факторы. Поэтому при предварительном тщательном отборе показателей для факторного анализа следует руководствоваться их смыслом, а не стремлением к включению в анализ как можно большего их числа.

Сущность факторного анализа

Приведём несколько основных положений факторного анализа. Пусть для матрицы Х измеренных параметров объекта существует ковариационная (корреляционная) матрица C , где р – число параметров, n – число наблюдений. Путем линейного преобразования X =QY +U можно уменьшить размерность исходного факторного пространства Х до уровня Y , при этом р "<<р . Это соответствует преобразованию точки, характеризующей состояние объекта в j -мерном пространстве, в новое пространство измерений с меньшей размерностью р ". Очевидно, что геометрическая близость двух или множества точек в новом факторном пространстве означает стабильность состояния объекта.

Матрица Y содержит ненаблюдаемые факторы, которые по существу являются гиперпараметрами, характеризующими наиболее общие свойства анализируемого объекта. Общие факторы чаще всего выбирают статистически независимыми, что облегчает их физическую интерпретацию. Вектор наблюдаемых признаков Х имеет смысл следствия изменения этих гиперпараметров.

Матрица U состоит из остаточных факторов, которые включают в основном ошибки измерения признаков x (i ). Прямоугольная матрица Q содержит факторные нагрузки, определяющие линейную связь между признаками и гиперпараметрами.
Факторные нагрузки – это значения коэффициентов корреляции каждого из исходных признаков с каждым из выявленных факторов. Чем теснее связь данного признака с рассматриваемым фактором, тем выше значение факторной нагрузки. Положительный знак факторной нагрузки указывает на прямую (а отрицательный знак – на обратную) связь данного признака с фактором.

Таким образом, данные о факторных нагрузках позволяют сформулировать выводы о наборе исходных признаков, отражающих тот или иной фактор, и об относительном весе отдельного признака в структуре каждого фактора.

Модель факторного анализа похожа на модели многомерного регрессионного и дисперсионного анализа. Принципиальное отличие модели факторного анализа в том, что вектор Y – это ненаблюдаемые факторы, а в регрессионном анализе – это регистрируемые параметры. В правой части уравнения (8.1) неизвестными являются матрица факторных нагрузок Q и матрица значений общих факторов Y.

Для нахождения матрицы факторных нагрузок используют уравнениеQQ т =S–V, где Q т – транспонированная матрица Q, V – матрица ковариаций остаточных факторов U, т.е. . Уравнение решается путем итераций при задании некоторого нулевого приближения ковариационной матрицы V(0). После нахождения матрицы факторных нагрузок Q вычисляются общие факторы (гиперпараметры) по уравнению
Y=(Q т V -1)Q -1 Q т V -1 X

Пакет статистического анализа Statistica позволяет в диалоговом режиме вычислить матрицу факторных нагрузок, а также значения нескольких заранее заданных главных факторов, чаще всего двух – по первым двум главным компонентам исходной матрицы параметров.

Факторный анализ в системе Statistica

Рассмотрим последовательность выполнения факторного анализа на примере обработки результатов анкетного опроса работников предприятия . Требуется выявить основные факторы, которые определяют качество трудовой жизни.

На первом этапе необходимо отобрать переменные для проведения факторного анализа. Используя корреляционный анализ, исследователь пытается выявить взаимосвязь исследуемых признаков, что, в свою очередь, даёт ему возможность выделить полный и безызбыточный набор признаков путём объединения сильно коррелирующих признаков.

Если проводить факторный анализ по всем переменным, то результаты могут получиться не совсем объективными, так как некоторые переменные определяется другими данными, и не могут регулироваться сотрудниками рассматриваемой организации.

Для того чтобы понять, какие показатели следует исключить, построим по имеющимся данным матрицу коэффициентов корреляции в Statistica: Statistics/ Basic Statistics/ Correlation Matrices/ Ok. В стартовом окне этой процедуры Product-Moment and Partial Correlations (рис. 4.3) для расчёта квадратной матрицы используется кнопка One variable list. Выбираем все переменные (select all), Ok, Summary. Получаем корреляционную матрицу.

Если коэффициент корреляции изменяется в пределах от 0,7 до 1, то это означает сильную корреляцию показателей. В этом случае можно исключить одну переменную с сильной корреляцией. И наоборот, если коэффициент корреляции мал, можно исключить переменную из-за того, что она ничего не добавит к общей сумме. В нашем случае сильной корреляции между какими-либо переменными не наблюдается, и факторный анализ будем проводить для полного набора переменных.

Для запуска факторного анализа необходимо вызвать модуль Statistics/ Multivariate Exploratory Techniques (многомерные исследовательские методы)/ Factor Analysis (факторный анализ). На экране появится окно модуля Factor Analysis.



Для анализа выбираем все переменные электронной таблицы; Variables (переменные): select all, Ok. В строке Input file (тип файла входных данных) указывается Raw Data (исходные данные). В модуле возможны два типа исходных данных – Raw Data (исходные данные) и Correlation Matrix – корреляционная матрица.

В разделе MD deletion задаётся способ обработки пропущенных значений:
* Casewise – способ исключения пропущенных значений (по умолчанию);
* Pairwise – парный способ исключения пропущенных значений;
* Mean substitution – подстановка среднего вместо пропущенных значений.
Способ Casewise состоит в том, что в электронной таблице, содержащей данные, игнорируются все строки, в которых имеется хотя бы одно пропущенное значение. Это относится ко всем переменным. В способе Pairwise игнорируются пропущенные значения не для всех переменных, а лишь для выбранной пары.

Выберем способ обработки пропущенных значений Casewise.

Statistica обработает пропущенные значения тем способом, который указан, вычислит корреляционную матрицу и предложит на выбор несколько методов факторного анализа.

После нажатия кнопки Ok появляется окно Define Method of Factor Extraction (определить метод выделения факторов).

Верхняя часть окна является информационной. Здесь сообщается, что пропущенные значения обработаны методом Casewise. Обработано 17 наблюдений и 17 наблюдений принято для дальнейших вычислений. Корреляционная матрица вычислена для 7 переменных. Нижняя часть окна содержит 3 вкладки: Quick, Advanced, Descriptives.

Во вкладке Descriptives (описательные статистики) имеются две кнопки:
1- просмотреть корреляции, средние и стандартные отклонения;
2- построить множественную регрессию.

Нажав на первую кнопку, можно посмотреть средние и стандартные отклонения, корреляции, ковариации, построить различные графики и гистограммы.

Во вкладке Advanced, в левой части, выберем метод (Extraction method) факторного анализа: Principal components (метод главных компонент). В правой части выбираем максимальное число факторов (2). Задаётся либо максимальное число факторов (Max no of factors), либо минимальное собственное значение: 1 (eigenvalue).

Нажимаем Ok, и Statistica быстро произвёдет вычисления. На экране появляется окно Factor Analysis Results (результаты факторного анализа). Как говорилось ранее, результаты факторного анализа выражаются набором факторных нагрузок. Поэтому далее будем работать с вкладкой Loadings.

Верхняя часть окна – информационная:
Number of variables (число анализируемых переменных): 7;
Method (метод выделения факторов): Principal components (главных компонент);
Log (10) determinant of correlation matrix (десятичный логарифм детерминанта корреляционной матрицы): –1,6248;
Number of factors extracted (число выделенных факторов): 2;
Eigenvalues (собственные значения): 3,39786 и 1,19130.
В нижней части окна находятся функциональные кнопки, позволяющие всесторонне просмотреть результаты анализа, числено и графически.
Factor rotation – вращение факторов, в данном выпадающем окне можно выбрать различные повороты осей. С помощью поворота системы координат можно получить множество решений, из которого необходимо выбрать интерпретируемое решение.

Существуют различные методы вращения координат пространства. Пакет Statistica предлагает восемь таких методов, представленных в модуле факторного анализа. Так, например, метод варимакс соответствует преобразованию координат: вращение, максимизирующее дисперсию. В методе варимакс получают упрощённое описание столбцов факторной матрицы, сводя все значения к 1 или 0. При этом рассматривается дисперсия квадратов нагрузок фактора. Факторная матрица, получаемая с помощью метода вращения варимакс, в большей степени инвариантна по отношению к выбору различных множеств переменных.

Вращение методом квартимакс ставит целью аналогичное упрощение только по отношению к строкам факторной матрицы. Эквимакс занимает промежуточное положение? при вращении факторов по этому методу одновременно делается попытка упростить и столбцы, и строки. Рассмотренные методы вращения относятся к ортогональным вращениям, т.е. в результате получаются некоррелированные факторы. Методы прямого облимина и промакс вращения относятся к косоугольным вращениям, в результате которых получаются коррелированные между собой факторы. Термин?normalized? в названиях методов указывает на то, что факторные нагрузки нормируются, то есть делятся на квадратный корень из соответствующей дисперсии.

Из всех предлагаемых методов, мы сначала посмотрим результат анализа без вращения системы координат – Unrotated. Если полученный результат окажется интерпретируемым и будет нас устраивать, то на этом можно остановиться. Если нет, можно вращать оси и посмотреть другие решения.

Щёлкаем по кнопке "Factor Loading" и смотрим факторные нагрузки численно.



Напомним, что факторные нагрузки – это значения коэффициентов корреляции каждой из переменных с каждым из выявленных факторов.

Значение факторной нагрузки, большее 0,7 показывает, что данный признак или переменная тесно связан с рассматриваемым фактором. Чем теснее связь данного признака с рассматриваемым фактором, тем выше значение факторной нагрузки. Положительный знак факторной нагрузки указывает на прямую (а отрицательный знак? на обратную) связь данного признака с фактором.
Итак, из таблицы факторных нагрузок было выявлено два фактора. Первый определяет ОСБ – ощущение социального благополучия. Остальные переменные обусловлены вторым фактором.

В строке Expl. Var (рис. 8.5) приведена дисперсия, приходящаяся на тот или иной фактор. В строке Prp. Totl приведена доля дисперсии, приходящаяся на первый и второй фактор. Следовательно, на первый фактор приходится 48,5 % всей дисперсии, а на второй фактор – 17,0 % всей дисперсии, всё остальное приходится на другие неучтенные факторы. В итоге, два выявленных фактора объясняют 65,5 % всей дисперсии.



Здесь мы также видим две группы факторов – ОСБ и остальное множество переменных, из которых выделяется ЖСР – желание сменить работу. Видимо, имеет смысл исследовать это желание более основательно на основе сбора дополнительных данных.

Выбор и уточнение количества факторов

Как только получена информация о том, сколько дисперсии выделил каждый фактор, можно возвратиться к вопросу о том, сколько факторов следует оставить. По своей природе это решение произвольно. Но имеются некоторые общеупотребительные рекомендации, и на практике следование им даёт наилучшие результаты.

Количество общих факторов (гиперпараметров) определяется путём вычисления собственных чисел (рис. 8.7) матрицы Х в модуле факторного анализа. Для этого во вкладке Explained variance (рис. 8.4) необходимо нажать кнопку Scree plot.


Максимальное число общих факторов может быть равно количеству собственных чисел матрицы параметров. Но с увеличением числа факторов существенно возрастают трудности их физической интерпретации.

Сначала можно отобрать только факторы, с собственными значениями, большими 1. По существу, это означает, что если фактор не выделяет дисперсию, эквивалентную, по крайней мере, дисперсии одной переменной, то он опускается. Этот критерий используется наиболее широко. В приведённом выше примере на основе этого критерия следует сохранить только 2 фактора (две главные компоненты).

Можно найти такое место на графике, где убывание собственных значений слева направо максимально замедляется. Предполагается, что справа от этой точки находится только "факториальная осыпь". В соответствии с этим критерием можно оставить в примере 2 или 3 фактора.
Из рис. видно, что третий фактор незначительно увеличивает долю общей дисперсии.

Факторный анализ параметров позволяет выявить на ранней стадии нарушение рабочего процесса (возникновение дефекта) в различных объектах, которое часто невозможно заметить путём непосредственного наблюдения за параметрами. Это объясняется тем, что нарушение корреляционных связей между параметрами возникает значительно раньше, чем изменение одного параметра. Такое искажение корреляционных связей позволяет своевременно обнаружить факторный анализ параметров. Для этого достаточно иметь массивы зарегистрированных параметров.

Можно дать общие рекомендации по использованию факторного анализа вне зависимости от предметной области.
* На каждый фактор должно приходиться не менее двух измеренных параметров.
* Число измерений параметров должно быть больше числа переменных.
* Количество факторов должно обосновываться, исходя из физической интерпретации процесса.
* Всегда следует добиваться того, чтобы количество факторов было намного меньше числа переменных.

Критерий Кайзера иногда сохраняет слишком много факторов, в то время как критерий каменистой осыпи иногда сохраняет слишком мало факторов. Однако оба критерия вполне хороши при нормальных условиях, когда имеется относительно небольшое число факторов и много переменных. На практике более важен вопрос о том, когда полученное решение может быть интерпретировано. Поэтому обычно исследуется несколько решений с большим или меньшим числом факторов, и затем выбирается одно наиболее осмысленное.

Пространство исходных признаков должно быть представлено в однородных шкалах измерения, т. к. это позволяет при вычислении использовать корреляционные матрицы. В противном случае возникает проблема "весов" различных параметров, что приводит к необходимости применения при вычислении ковариационных матриц. Отсюда может появиться дополнительная проблема повторяемости результатов факторного анализа при изменении количества признаков. Следует отметить, что указанная проблема просто решается в пакете Statistica путем перехода к стандартизированной форме представления параметров. При этом все параметры становятся равнозначными по степени их связи с процессами в объекте исследования.

Плохо обусловленные матрицы

Если в наборе исходных данных имеются избыточные переменные и не проведено их исключение корреляционным анализом, то нельзя вычислить обратную матрицу (8.3). Например, если переменная является суммой двух других переменных, отобранных для этого анализа, то корреляционная матрица для такого набора переменных не может быть обращена, и факторный анализ принципиально не может быть выполнен. На практике это происходит, когда пытаются применить факторный анализ к множеству сильно зависимых переменных, что иногда случается, например, в обработке вопросников. Тогда можно искусственно понизить все корреляции в матрице путём добавления малой константы к диагональным элементам матрицы, и затем стандартизировать её. Эта процедура обычно приводит к матрице, которая может быть обращена, и поэтому к ней применим факторный анализ. Более того, эта процедура не влияет на набор факторов, но оценки оказываются менее точными.

Факторное и регрессионное моделирование систем с переменными состояниями

Системой с переменными состояниями (СПС) называется система, отклик которой зависит не только от входного воздействия, но и от обобщенного постоянного во времени параметра, определяющего состояние. Регулируемый усилитель или аттенюатор? это пример простейшей СПС, в котором коэффициент передачи может дискретно или плавно изменяться по какому-либо закону. Исследование СПС обычно проводится для линеаризованных моделей, в которых переходный процесс, связанный с изменением параметра состояния, считается завершённым.

Аттенюаторы, выполненные на основе Г-, Т- и П-образного соединения последовательно и параллельно включённых диодов получили наибольшее распространение. Сопротивление диодов под воздействием управляющего тока может меняться в широких пределах, что позволяет изменять АЧХ и затухание в тракте. Независимость фазового сдвига при регулировании затухания в таких аттенюаторах достигается с помощью реактивных цепей, включенных в базовую структуру. Очевидно, что при разном соотношении сопротивлений параллельных и последовательных диодов может быть получен один и тот же уровень вносимого ослабления. Но изменение фазового сдвига будет различным.

Исследуем возможность упрощения автоматизированного проектирования аттенюаторов, исключающего двойную оптимизацию корректирующих цепей и параметров управляемых элементов. В качестве исследуемой СПС будем использовать электрически управляемый аттенюатор, схема замещения которого приведена на рис. 8.8. Минимальный уровень затухания обеспечивается в случае малого сопротивления элемента Rs и большого сопротивления элемента Rp. По мере увеличения сопротивления элемента Rs и уменьшения сопротивления элемента Rp вносимое ослабление увеличивается.

Зависимости изменения фазового сдвига от частоты и затухания для схемы без коррекции и с коррекцией приведены на рис. 8.9 и 8.10 соответственно. В корректированном аттенюаторе в диапазоне ослаблений 1,3-7,7 дБ и полосе частот 0,01?4,0 ГГц достигнуто изменение фазового сдвига не более 0,2°. В аттенюаторе без коррекции изменение фазового сдвига в той же полосе частот и диапазоне ослаблений достигает 3°. Таким образом, фазовый сдвиг уменьшен за счет коррекции почти в 15 раз.


Будем считать параметры коррекции и управления независимыми переменными или факторами, влияющими на затухание и изменение фазового сдвига. Это даёт возможность с помощью системы Statistica провести факторный и регрессионный анализ СПС с целью установления физических закономерностей между параметрами цепи и отдельными характеристиками, а также упрощения поиска оптимальных параметров схемы.

Исходные данные формировались следующим образом. Для параметров коррекции и сопротивлений управления, отличающихся от оптимальных в большую и меньшую стороны на сетке частот 0,01?4 ГГц, были вычислены вносимое ослабление и изменение фазового сдвига.

Методы статистического моделирования, в частности, факторный и регрессионный анализ, которые раньше не использовались для проектирования дискретных устройств с переменными состояниями, позволяют выявить физические закономерности работы элементов системы. Это способствует созданию структуры устройства исходя из заданного критерия оптимальности. В частности, в данном разделе рассматривался фазоинвариантный аттенюатор как типичный пример системы с переменными состояниями. Выявление и интерпретация факторных нагрузок, влияющих на различные исследуемые характеристики, позволяет изменить традиционную методологию и существенно упростить поиск параметров коррекции и параметров регулирования.

Установлено, что использование статистического подхода к проектированию подобных устройств оправдано как для оценки физики их работы, так и для обоснования принципиальных схем. Статистическое моделирование позволяет существенно сократить объём экспериментальных исследований.

Результаты

  • Наблюдение за общими факторами и соответствующими факторными нагрузками – это необходимое выявление внутренних закономерностей процессов.
  • С целью определения критических значений контролируемых расстояний между факторными нагрузками следует накапливать и обобщать результаты факторного анализа для однотипных процессов.
  • Применение факторного анализа не ограничено физическими особенностями процессов. Факторный анализ является как мощным методом мониторинга процессов, так и применим к проектированию систем самого различного назначения.

Функционирование любой социально-экономической системы (к которым относится и действующее предприятие) происходит в условиях сложного взаимодействия комплекса внутренних и внешних факторов. Фактор - это причина, движущая сила какого-либо процесса или явления, определяющая его характер или одну из основных черт.

Под факторным анализом понимается методика комплексного и системного изучения и измерения воздействия факторов на величину результативных показателей.

В общем случае можно выделить следующие основные этапы(задачи) факторного анализа:

    Постановка цели анализа.

    Отбор факторов, определяющих исследуемые результативные показатели.

    Классификация и систематизация факторов с целью обеспечения комплексного и системного подхода к исследованию их влияния на результаты хозяйственной деятельности.

    Определение формы зависимости между факторами и результативным показателем.

    Моделирование взаимосвязей между результативным и факторными показателями.

    Расчет влияния факторов и оценка роли каждого из них в изменении величины результативного показателя.

Работа с факторной моделью (практическое ее использование для управления экономическими процессами).

Иначе говоря, задача метода - переход от реального большого числа признаков или причин определяющих наблюдаемую изменчивость к небольшому числу наиболее важных переменных (факторов) с минимальной потерей информации (близкие по сути, но не по математическому аппарату методы - компонентный анализ, канонический анализ и др.).

Метод возник и первоначально разрабатывался в задачах психологии и антропологии (рубеж 19 и 20 вв.), но сейчас область его приложения значительно шире.

Назначение факторного анализа

Факторный анализ - определение влияния факторов на результат - является одним из сильнейших методических решений в анализе хозяйственной деятельности компаний для принятия решений. Для руководителей - дополнительный аргумент, дополнительный "угол зрения".

Целесообразность применения факторного анализа

Как известно, анализировать можно все и до бесконечности. Целесообразно на первом этапе реализовать анализ по отклонениям, а там где это необходимо и оправдано - применить факторный метод анализа. Во многих случаях простого анализа по отклонениям достаточно, чтобы понять, что отклонение «критическое», и когда совсем не обязательно знать степень его влияния.

Факторы делятся на внутренние и внешние , в зависимости от того, влияет на них деятельность данного предприятия или нет. При анализе основное внимание уделяется внутренним факторам, на которые предприятие может воздействовать.

Факторы подразделяются на объективные, не зависящие от воли и желаний людей, и субъективные, подверженные влиянию деятельности юридических и физических лиц.

По степени распространенности факторы делятся на общие и специфические. Общие факторы действуют во всех отраслях экономики. Специфические факторы действуют в пределах отдельной отрасли или конкретного предприятия.

Виды факторного анализа

Существуют следующие типы факторного анализа:

1) Детерминированный (функциональный) – результативный показатель представлен в виде произведения, частного или алгебраической суммы факторов.

2) Стохастический (корреляционный) – связь между результативным и факторными показателями является неполной или вероятностной.

3) Прямой (дедуктивный) – от общего к частному.

4) Обратный (индуктивный) – от частного к общему.

5) Одноступенчатый и многоступенчатый.

6) Статический и динамический.

7) Ретроспективный и перспективный.

В зависимости от типа факторной модели различают два основных вида факторного анализа - детерминированный и стохастический.

Детерминированный факторный анализ представляет собой методику исследования влияния факторов, связь которых с результативным показателем носит функциональный характер, т. е. когда результативный показатель факторной модели представлен в виде произведения, частного или алгебраической суммы факторов.

Данный вид факторного анализа наиболее распространен, поскольку, будучи достаточно простым в применении (по сравнению со стохастическим анализом), позволяет осознать логику действия основных факторов развития предприятия, количественно оценить их влияние, понять, какие факторы и в какой пропорции возможно и целесообразно изменить для повышения эффективности производства.

Детерминированный факторный анализ имеет достаточно жесткую последовательность выполняемых процедур:

1.построение экономически обоснованной детерминированной факторной модели;

2.выбор приема факторного анализа и подготовка условий для его выполнения;

3.реализация счетных процедур анализа модели;

Основные методы детерминированного факторного анализа

Метод цепных подстановок; Метод абсолютных разниц; Метод относительных разниц; Интегральный метод; Метод логарифмирования.

Стохастический анализ представляет собой методику исследования факторов, связь которых с результативным показателем в отличие от функциональной является неполной, вероятностной (корреляционной). Суть стохастического метода - измерение влияния стохастических зависимостей с неопределенными и приблизительными факторами. Стохастический метод целесообразно применять для экономических исследований с неполной (вероятностной) корреляцией: например, для задач маркетинга. Если при функциональной (полной) зависимости с изменением аргумента всегда происходит соответствующее изменение функции, то при корреляционной связи изменение аргумента может дать несколько значений прироста функции в зависимости от сочетания других факторов, определяющих данный показатель. Например, производительность труда при одном и том же уровне фондовооруженности может быть неодинаковой на разных предприятиях. Это зависит от оптимальности сочетания других факторов, воздействующих на этот показатель.

Стохастическое моделирование является в определенной степени дополнением и углублением детерминированного факторного анализа. В факторном анализе эти модели используются по трем основным причинам :

Необходимо изучить влияние факторов, по которым нельзя построить жестко детерминированную факторную модель (например, уровень финансового левериджа);

Необходимо изучить влияние сложных факторов, которые не поддаются объединению в одной и той же жестко детерминированной модели;

Необходимо изучить влияние сложных факторов, которые не могут быть выражены одним количественным показателем (например, уровень научно-технического прогресса).

Необходимо также различать статический и динамический факторный анализ. Первый вид применяется при изучении влияния факторов на результативные показатели на соответствующую дату. Другой вид представляет собой методику исследования причинно-следственных связей в динамике.

И, наконец, факторный анализ может быть ретроспективным, который изучает причины прироста результативных показателей за прошлые периоды, и перспективным, который исследует поведение факторов и результативных показателей в перспективе.

Факторный анализ может быть одноступенчатым и многоступенчатым . Первый тип используется для исследования факторов только одного уровня (одной ступени) подчинения без их детализации на составные части. Например, . При многоступенчатом факторном анализе проводится детализация факторов a и b на составные элементы с целью изучения их поведения. Детализация факторов может быть продолжена и дальше. В этом случае изучается влияние факторов различных уровней соподчиненности.

Необходимо также различать статический и динамический факторный анализ . Первый вид применяется при изучении влияния факторов на результативные показатели на соответствующую дату. Другой вид представляет собой методику исследования причинно-следственных связей в динамике.

Факторный анализ прибыли позволяет оценить влияние каждого фактора в отдельности на финансовый результат в целом. Читайте, как его провести, а также скачайте методику проведения.

Суть факторного анализа

Суть факторного метода в том, чтобы определить влияние каждого фактора в отдельности на результат в целом. Это достаточно сложно сделать, так факторы влияют друг на друга, а если фактор не количественный (например, сервис), то его вес оценивают экспертным путем, что накладывает на весь анализ отпечаток субъективности. Кроме того, когда факторов влияющих на результат становится слишком много, то данные невозможно обрабатывать и рассчитывать без специальных программ математического моделирования.


Одним из самых главных финансовых показателей предприятия является прибыль. В рамках факторного анализа лучше анализировать маржинальную прибыль, где постоянные расходы отсутствуют, либо прибыль от продаж.

Узнайте причины изменений с помощью Excel-модели

Скачайте готовую модель в Excel. Она поможет узнать, как повлияли на выручку объем продаж, цена и структура продаж.

Факторный анализ методом цепных подстановок

При факторном анализе экономисты обычно применяют метод цепных подстановок, однако математически данный метод является некорректным и выдает сильно перекошенные результаты, которые значительно различаются в зависимости от того, какие переменные подставляют вначале, а какие после (например, в таблице 1).

Таблица 1 . Анализ выручки в зависимости от цены и количества проданной продукции

Базовый год

Текущий год

Прирост выручки

Выручка
В 0

Выручка
В 0

За счет
цены
В p

За счет количества
В q

Вариант 1

P 1 Q 0 -P 0 Q 0

P 1 Q 1 -P 1 Q 0

В 1 -В 0

Вариант 2

P 1 Q 1 -P 0 Q 1

P 0 Q 1 -P 0 Q 0

В 1 -В 0

В первом варианте выручка за счет цены выросла на 500 рублей, а во втором на 600 рублей; выручка за счет количества в первом выросла на 300 рублей, а во втором всего на 200 рублей. Таким образом, результаты значительно разнятся в зависимости от порядка подстановки. .

Можно более корректно распределять факторы, влияющие на конченый результат в зависимости от наценки (Нац) и количества продаж (Кол) (см. рисунок 1).

Рисунок 1

Формула прироста прибыли за счет наценки: П нац = ∆ Нац * (Кол (тек) + Кол (баз)) / 2

Формула прироста прибыли за счет количества: П кол = ∆ Кол * (Нац (тек) + Нац (баз)) / 2

Пример двухфакторного анализа

Рассмотрим в таблице 2 пример.

Таблица 2 . Пример двухфакторного анализа выручки

Базовый год

Текущий год

Прирост выручки

Выручка
В 0

Выручка
В 0

За счет наценки
В p

количества
В q

∆ P(Q 1 +Q 0)/2

∆ Q(P 1 +P 0)/2

В 1 -В 0

Товар «А»

Получились усредненные величины между вариантами цепных подстановок (см. таблицу 1).

Трехфакторная модель для анализа прибыли

Трехфакторная модель значительно сложнее двухфакторной (рисунок 2).

Рисунок 2


Формула, по которой определяют влияние каждого фактора в 3-х факторной модели (например, наценка, количество, номенклатура) на общий результат похожа на формулу в двухфакторной, но уже сложнее.

П нац = ∆Нац * ((Кол (тек) * Ном (тек) + Кол (баз) * Ном (баз)) / 2 - ∆Кол * ∆Ном / 6)

П кол = ∆Кол * ((Нац (тек) * Ном (тек) + Нац (баз) * Ном (баз)) / 2 - ∆Нац * ∆Ном / 6)

П ном = ∆Ном * ((Нац (тек) * Кол (тек) + Нац (баз) * Кол (баз)) / 2 - ∆Нац * ∆Кол / 6)

Пример анализа

В таблице мы привели пример использования трехфакторной модели.

Таблица 3 . Пример расчета выручки по трехфакторной модели

Прошлый год

Текущий год

Факторы выручки

Номенклатура

∆ Q((N 1 P 1 + N 0 P 0) / 2 -
- ∆ N ∆ P/6)

∆ P((N 1 Q 1 + N 0 Q 0) / 2 -
- ∆ N ∆ Q/6)

∆ N ((Q 1 P 1 + Q 0 P 0) / 2 -
- ∆ Q ∆ P/6)

Если посмотреть на полученные результаты анализа выручки факторным методом, то наибольший прирост выручки произошел за счет повышения цен. Цены повысились на (15 / 10 - 1) * 100% = 50%, следующим по значимости оказалось увеличение номенклатуры с 3 до 4 ед.– темп прироста (4 / 3 - 1) * 100% = 33% и на последнем месте «количество», которое возросло всего на (120/100-1)*100% = 20%. Таким образом, факторы влияют на прибыль пропорционально темпу роста.

Четырехфакторная модель

К сожалению, для функции вида Пр = Kол ср * Ном * (Цен - Cеб), не существует простых формул расчета влияния каждого отдельного фактора на показатель.

Пр – прибыль;

Kол ср – среднее количество на единицу номенклатуры;

Ном – количество номенклатурных позиций;

Цена – цена;

.

Есть метод расчета, основанный на теореме Лагранжа о конечных приращениях, с использованием дифференциального и интегрального исчислений, однако он настолько сложный и трудоемкий, что практически не применим в реальной жизни.

Поэтому для вычленения каждого отдельного фактора сначала вычисляются более общие факторы по обычной двухфакторной модели, а затем уже их составляющие тем же способом.

Общая формула прибыли: Пр = Кол * Нац (Нац – наценка на ед. продукции). Соответственно, мы определяем влияние двух факторов: количества и наценки. В свою очередь количество проданной продукции зависит от номенклатуры и количества продаж приходящихся в среднем на единицу номенклатуры.

Получаем Кол = Kол ср * Ном. А наценка зависит от цены и себестоимости, т.е. Нац = Цен – Себ. В свою очередь влияние себестоимости на изменение прибыли зависит от количества проданной продукции и от изменения самой себестоимости.

Таким образом, нам надо по отдельности определить влияние 4-х факторов на изменение прибыли: Кол, Цена, Себ, Ном, используя 4 уравнения:

  1. Пр = Кол * Нац
  2. Кол = Kол ср * Ном
  3. Затр = Кол * Себ.
  4. Выр = Кол * Цена

Пример анализа по четырехфактороной модели

Рассмотрим это на примере. Исходные данные и расчеты в таблице

Таблица 4 . Пример анализа прибыли по 4-х факторной модели

Прошлый год

Кол (ср)
Q (ср 0)

Прибыль
П 0

Q 0 *(P 0 -С 0)

∑Q 0 P 0 / ∑Q 0

∑Q 0 P 0 / ∑Q 0

Текущий год

Кол (ср)
Q (ср 1)

Q 1 *(P 1 -С 1)

Итоговые и средневзвешенные значения

∑Q 1 P 1 /∑Q 1

∑Q 1 P 1 /∑Q 1

Влияние фактора на изменение прибыли

Ном
N ∆

Кол
Q ∆

Кол (ср)
Q (ср)∆

Цен
P ∆

Нац
Н ∆

∆N * (Q (ср 0) +Q (ср 1)) / 2
* (H 1 + H 0) / 2

∆Q*(H 1 + H 0) / 2

∆Q (ср) * (N 1 + N 0) / 2

* (H 1 + H 0) / 2

∆P * (Q 1 + Q 0) / 2

∆С * (Q 1 + Q 0) / 2

∆H * (Q 1 +Q 0)/2

Итоговые и средневзвешенные значения

Примечание: цифры в таблице Excel могут на несколько единиц не совпадать с данным в текстовом описании, т.к. в таблице они округлены до десятых.

1. Сначала по двухфакторной модели (описанной в самом начале) раскладываем изменение прибыли на количественный фактор и фактор наценки. Это факторы первого порядка.

Пр = Кол * Нац

Кол ∆ = ∆Q * (H 1 + H 0) / 2 = (220 - 180) * (3,9 + 4,7) / 2 = 172

Нац ∆ = ∆H * (Q 1 + Q 0) / 2 = (4,7 - 3,9) * (220 + 180) / 2 = 168

Проверка: ∆Пр = Кол ∆ + Нац ∆ = 172+168 = 340

2. Вычисляем зависимость от параметра себестоимости. Для этого раскладываем затраты на количество и себестоимость по той же формуле, но со знаком минус, так как себестоимость снижает прибыль.

Затр = Кол * Себ

Себ∆ = - ∆С*(Q1+Q0) / 2 = -(7,2 - 6,4) * (180 + 220) / 2 = -147

3. Вычисляем зависимость от цены. Для этого раскладываем выручку на количество и цену по той же формуле.

Выр = Кол*Цена

Цена∆ = ∆P * (Q1 + Q0) / 2 = (11,9 - 10,3) * (220 + 180) / 2 = 315

Проверка: Нац∆ = Цена∆ - Себ∆ = 315 - 147 = 168

4. Вычисляем влияние номенклатуры на прибыль. Для этого раскладываем количество проданной продукции на число единиц в ассортименте и среднее количество, приходящееся на одну единицу номенклатуры. Так мы определим соотношение фактора количества и номенклатуры в натуральном выражении. После этого умножаем полученные данные на среднегодовую наценку и переводим в рубли.

Кол = Ном * Кол (ср)

Ном ∆ = ∆N * (Q (ср 0) + Q (ср 1)) / 2 * (H 1 + H 0) / 2 = (3 - 2) (73 + 90) / 2 * (4,7 + 3,9) = 352

Кол (ср) = ∆Q (ср) *(N 1 + N 0) / 2 * (H 1 + H 0) / 2 = (73 - 90) * (2 + 3) / 2 * (4,7 + 3,9) = -180

Проверка: Кол ∆ = Ном ∆ + Кол (ср) = 352-180 = 172

Приведенный четырехфакторный анализ показал, что прибыль увеличилась по сравнению с прошлым годом за счет:

  • повышения цен на 315 тыс. руб.;
  • изменения номенклатуры на 352 тыс. руб.

А уменьшилась за счет:

  • роста себестоимости на 147 тыс. руб.;
  • падения количества продаж на 180 тыс. руб.

Казалось бы, парадокс: общее количество единиц проданных в текущем году по сравнению с прошлым увеличилось на 40 единиц, но при этом фактор количества показывает отрицательный результат. Это потому что рост продаж произошел за счет увеличения номенклатурных единиц. Если в прошлом году их было всего 2, то в текущем добавилась еще одна. При этом по количеству товар «Б» продали в отчетном году на 20 ед. меньше, чем в предыдущем.

Это говорит о том, что товар «С» введенный в новом году частично заместил товар «Б», но привлек к себе новых покупателей, которых не было у товара «Б». Если в следующем году товар «Б» продолжит утрачивать свои позиции, то его можно выводить из ассортимента.

Что касается цен, то их повышение на (11,9/10,3 – 1)*100% = 15,5% не сильно затронуло продажи в целом. Если судить по товару «А», который не затронули структурные изменения ассортимента, то его продажи выросли на 20%, не смотря на рост цены на 33%. Это означает, что рост цен не является для фирмы критичным.

С себестоимостью все понятно: она выросла и прибыль уменьшилась.

Факторный анализ прибыли от продаж

Евгений Шагин , финансовый директор УК «РусЧерМет»

Чтобы провести факторный анализ, необходимо:

  • выбрать базу для анализа – выручка от продаж, прибыль;
  • отобрать факторы, влияние которых необходимо оценить. В зависимости от выбранной базы анализа ими могут быть: объем продаж, себестоимость, операционные расходы, внереализационные доходы, проценты за кредит, налоги;
  • оценить влияние каждого фактора на итоговый показатель. В базовый расчет по предыдущему периоду подставить значение выбранного фактора из отчетного периода и скорректировать итоговый показатель с учетом этих изменений;
  • определить влияние фактора. Вычесть из полученного промежуточного значения оцениваемого показателя его фактическое значение за предыдущий период. Если цифра положительная, изменение фактора оказало позитивное влияние, отрицательная – негативное.

Пример факторного анализа прибыли от продаж

Рассмотрим на примере. В отчет о финансовых результатах компании «Альфа» за предыдущий период подставим значение объема продаж за текущий период (571 513 512 руб. вместо 488 473 087 руб.), все остальные показатели останутся прежними (см. таблицу 5). Как результат, чистая прибыль увеличилась на 83 040 425 руб. (116 049 828 руб. – 33 009 403 руб.). Это означает, что если бы в предыдущем периоде компании удалось реализовать продукцию на ту же сумму, что и в этом, то ее чистая прибыль выросла бы как раз на эти 83 040 425 руб.

Таблица 5 . Факторный анализ прибыли по объему продаж

Показатель

Предыдущий период, руб.

с подстановкой
значения
фактора из
текущего
периода

Объем продаж

Валовая прибыль

Операционные расходы

Операционная прибыль

Проценты за кредит

Прибыль до налогообложения

Чистая прибыль

1 Значение объема продаж за текущий период.

2 Показатель пересчитан с учетом корректировки объема продаж.

По аналогичной схеме можно оценить влияние каждого фактора и пересчитать чистую прибыль, а итоговые результаты свести в одну таблицу (см. таблицу 6).

Таблица 6 . Влияние факторов на прибыль, руб.

Объем продаж

Себестоимость реализованной продукции, услуг

Операционные расходы

Внереализационные доходы/расходы

Проценты за кредит

Итого

32 244 671

Как видно из таблицы 6, наибольшее влияние в анализируемом периоде оказал рост продаж (83 040 425 руб.). Сумма влияния всех факторов совпадает с фактическим изменением прибыли за прошедший период. Отсюда можно сделать вывод о корректности результатов анализа.

Заключение

В заключение хочется понять: с чем же нужно сравнивать прибыль при факторном анализе? С прошлым годом, с базовым годом, с конкурентами, с планом? Как понять хорошо отработало предприятие этот год или нет? Например, предприятие увеличило прибыль за текущий год в два раза, казалось бы, это отличный результат! Но в это время конкуренты провели техническое переоснащение предприятия и со следующего года вытеснят счастливчиков с рынка. А если сравнивать с конкурентами, то у них доходы меньше, т.к. вместо, скажем, рекламы или расширения номенклатуры они вкладывали деньги в модернизацию. Таким образом, все зависит от целей и планов предприятия. Из чего следует, что прибыль фактическую нужно сравнивать, прежде всего, с плановой.