Что вырабатывает тэц. Как это сделано, как это работает, как это устроено. Что такое АЭС

Современный мир требует огромного количества энергии (электрической и тепловой), которая производится на электростанциях различного типа.

Человек научился добывать энергию из нескольких источников (углеводородное топливо, ядерные ресурсы, падающая вода, ветер и т.д.) Однако и по сей день наиболее востребованными и эффективными остаются тепловые и атомные электростанции, о которых и пойдет речь.

Что такое АЭС?

Атомная электростанция (АЭС) – это объект, на котором для производства энергии используется реакция распада ядерного топлива.

Попытки использования управляемой (то есть контролируемой, прогнозируемой) ядерной реакции для выработки электроэнергии были предприняты советскими и американскими учеными одновременно – в 40-х годах прошлого века. В 50-х годах «мирный атом» стал реальностью, и во многих странах мира стали строить АЭС.

Центральным узлом любой АЭС является ядерная установка, в которой происходит реакция. При распаде радиоактивных веществ происходит выделение огромного количества тепла. Выделяемая тепловая энергия используется для нагрева теплоносителя (как правило, воды), который, в свою очередь, нагревает воду второго контура до перехода ее в пар. Горячий пар вращает турбины, благодаря чему происходит образование электроэнергии.

В мире не утихают споры о целесообразности использования атомной энергии для выработки электричества. Сторонники АЭС говорят об их высокой продуктивности, безопасности реакторов последнего поколения, а также о том, что такие электростанции не загрязняют окружающую среду. Противники утверждают, что АЭС потенциально чрезвычайно опасны, а их эксплуатация и, особенно, утилизация отработанного топлива сопряжены с огромными расходами.

Что такое ТЭС?

Наиболее традиционным и распространенным в мире видом электростанциЙ являются ТЭС. Тепловые электростанции (так расшифровывается данная аббревиатура) вырабатывают электроэнергию за счет сжигания углеводородного топлива – газа, угля, мазута.


Схема работы ТЭС выглядит следующим образом: при сгорании топлива образуется большое количество тепловой энергии, с помощью которой нагревается вода. Вода превращается в перегретый пар, который подается в турбогенератор. Вращаясь, турбины приводят в движение детали электрогенератора, образуется электрическая энергия.

На некоторых ТЭЦ фаза передачи тепла теплоносителю (воде) отсутствует. В них используются газотурбинные установки, в которых турбину вращают газы, полученные непосредственно при сжигании топлива.

Существенным преимуществом ТЭС считается доступность и относительная дешевизна топлива. Однако есть у тепловых станций и недостатки. Это, прежде всего, угроза окружающей среде. При сжигании топлива в атмосферу выбрасывается большое количество вредных веществ. Чтобы сделать ТЭС более безопасными, применяется ряд методов, в том числе: обогащение топлива, установка специальных фильтров, задерживающих вредные соединения, использование рециркуляции дымовых газов и т.п.

Что такое ТЭЦ?

Само название данного объекта напоминает предыдущее, и на самом деле, ТЭЦ, как и тепловые электростанции преобразуют тепловую энергию сжигаемого топлива. Но помимо электроэнергии теплоэлектроцентрали (так расшифровывается ТЭЦ) поставляют потребителям тепло. ТЭЦ особенно актуальны в холодных климатических зонах, где нужно обеспечить жилые дома и производственные здания теплом. Именно поэтому ТЭЦ так много в России, где традиционно используется центральное отопление и водоснабжение городов.

По принципу работы ТЭЦ относятся к конденсационным электростанциям, но в отличие от них, на теплоэлектроцентралях часть выработанной тепловой энергии идет на производство электричества, а другая часть – на нагрев теплоносителя, который и поступает к потребителю.


ТЭЦ более эффективна по сравнению с обычными ТЭС, поскольку позволяет использовать полученную энергию по максимуму. Ведь после вращения электрогенератора пар остается горячим, и эту энергию можно использовать для отопления.

Помимо тепловых, существуют атомные ТЭЦ, которые в перспективе должны сыграть ведущую роль в электро- и теплоснабжении северных городов.

ТЭЦ - тепловая электростанция, которая производит не только электроэнергию, но и дает тепло в наши дома зимой. На примере Красноярской ТЭЦ посмотрим как работает почти любая теплоэлектростанция.

В Красноярске есть 3 теплоэлектроцентрали, суммарная электрическая мощность которых всего 1146 МВт. На заглавной фотографии видно 3 дымовые трубы ТЭЦ-3, высота самой высокой из них - 275 метров, вторая по высоте - 180 метров.

Сама аббревиатура ТЭЦ подразумевает собой, что станция вырабатывает не только электричество, но и тепло (горячая вода, отопление), причем, выработка тепла возможно даже более приоритетна в нашей известной суровыми зимами стране.

Упрощенно принцип работы ТЭЦ можно описать следующим образом.

Всё начинается с топлива. В роли топлива на разных электростанциях могут выступать уголь, газ, торф. В нашем случае это бурый уголь с Бородинского разреза, расположенного в 162 км от станции. Уголь привозят по железной дороге. Часть его складируется, другая часть идёт по конвейерам в энергоблок, где сам уголь сначала измельчается до пыли и потом подаётся в камеру сгорания - паровой котёл.

Вагоноопрокидыватель, с помощью которого уголь высыпается в бункера:

Здесь уголь измельчается и попадает в «топку»:



Паровой котел - это агрегат для получения пара с давлением выше атмосферного из непрерывно поступающей в него питательной воды. Происходит это за счет теплоты, выделяющейся при сгорании топлива. Сам котёл выглядит довольно внушительно. На Красноярской ТЭЦ-3 высота котла 78 метров (26-этажный дом), а весит он более 7 000 тонн! Производительность котла - 670 тонн пара в час:

Вид сверху:

Невероятное количество труб:

Отчётливо виден барабан котла . Барабан представляет собой цилиндрический горизонтальный сосуд, имеющий водяной и паровой объемы, которые разделяются поверхностью, называемой зеркалом испарения:

Остывшие дымовые газы (примерно 130 градусов), выходят из топки в электрофильтры. В электрофильтрах происходит очистка газов от золы, и очищенный дым уходит в атмосферу. Эффективная степень очистки дымовых газов составляет 99.7%.

На фотографии те самые электрофильтры:

Проходя через пароперегреватели пар нагревается до температуры 545 градусов и поступает в турбину, где под его давлением вращается ротор турбогенератора и, соответственно, вырабатывается электроэнергия.

Недостатком ТЭЦ является то, что они должны быть построены недалеко от конечного потребителя. Прокладка теплотрасс стоит огромных денег.

На Красноярской ТЭЦ-3 используется прямоточная система водоснабжения, то есть воду для охлаждения конденсатора и использования в котле берут прямо из Енисея, но перед этим она проходит очистку. После использования вода возвращается по каналу обратно в Енисей.

Турбогенератор:

Теперь немного о самой Красноярской ТЭЦ-3.

Строительство станции началось ещё в далёком 1981 году, но, как у нас в России бывает, из-за и кризисов построить ТЭЦ вовремя не получилось. С 1992 г до 2012 г станция работала как котельная - нагревала воду, но электричество вырабатывать научилась только 1-го марта прошлого года. На ТЭЦ работает около 560 человек.

Диспетчерская:

Еще на Красноряской ТЭЦ-3 функционируют 4 водогрейных котла:

Глазок в топке:

А это фото снято с крыши энергоблока. Большая труба имеет высоту 180м, та что поменьше - труба пусковой котельной:

Кстати, самая высокая дымовая труба в мире находится на электростанции в Казахстане в городе Экибастуз. Ее высота - 419.7 метров. Это она:

Трансформаторы:

Внутри здания ЗРУЭ (закрытое распределительное устройство с элегазовой изоляцией) на 220 кВ:

Общий вид распределительного устройства:

На этом всё. Спасибо за внимание.

Комбинированное производство тепла и электроэнергии

Комбинированное производство тепла и электроэнергии (ТЭЦ), также называемое когенерацией, является процессом одновременного производства электрической и тепловой энергии. Это означает, что тепло, вырабатываемое для производства электроэнергии, регенерируется и используется. Процесс производства на ТЭЦ может базироваться на использовании паровых или газовых турбин, или двигателей внутреннего сгорания. Первичным источником для производства энергии может быть широкий диапазон топлив, включая биомассу, отходы и ископаемые виды топлива, а также, геотермальная или солнечная энергия.

Финляндия - ведущая страна в области использования когенерации

Количество энергии, которую Финляндия экономит ежегодно, используя источники комбинированного производства энергии, равно более чем 10 процентам всей первичной энергии, используемой в стране, или 20 процентам потребления ископаемого топлива в Финляндии. Приблизительно одна треть электричества, используемого в Финляндии, получена на ТЭЦ. Промышленные ТЭЦ и ТЭЦ централизованного теплоснабжения, соответственно составляют 45 и 55 процентов в системе комбинированного производства. Промышленность использует более половины всей электроэнергии, потребляемой в Финляндии, и почти 40 процентов этого количества, произведена ТЭЦ. В зависимости от годового изменения климата, почти 75 - 80 процентов теплоэнергии для централизованного теплоснабжения производится на ТЭЦ.

Широко используется в течение многих десятилетий

Потребление энергии на душу населения в Финляндии, наиболее высокое среди стран Организации Экономического Сотрудничества и Развития. Это объясняется большой долей энергоемких отраслей промышленности, таких как, целлюлозная и бумажная промышленность, в финской экономике. В результате этого, экономичному использованию и надежному распределению энергии всегда уделялось особенное внимание в Финляндии. Географические и климатические особенности страны обеспечили основу для развития ТЭЦ в централизованном теплоснабжении. Эффективность производства энергии является существенным фактором, так как, ежегодная потребность в тепле и количество часов использования энергии высоки.

История использования промышленных ТЭЦ

Комбинированное производство энергии в промышленности, является результатом потребности в производстве тепла для собственных нужд.

Первые промышленные ТЭЦ в Финляндии были построены, уже в начале 20-х и 30-х годов. ТЭЦ были выбраны потому, что это был наиболее надежный и экономичный способ производства электроэнергии. Местные источники энергии часто использовались как отправная точка.

Индустриальные ТЭЦ противодавления, в качестве топлива, главным образом используют жидкие щелочные отходы, образующиеся при производстве целлюлозы. Черный щелочной раствор является подходящим для сжигания, из-за наличия органических деревянных остатков, которые он содержит. Целлюлозная и бумажная промышленность, не единственные отрасли, которые используют свои отходы для сжигания на ТЭЦ. Металлургическая и химическая промышленности, также производят отходы, которые могут быть превращены в тепло и электричество в процессе когенерации.

Централизованное теплоснабжение, как часть когенерации

Из-за северного местоположения страны, централизованное теплоснабжение - естественный выбор для Финляндии. Планы относительно организации централизованной системы теплоснабжения были осуществлены после II Мировой войны. Когенерация тепловой и электрической энергии производилась при использовании отходов древесины, производимых

деревообрабатывающей промышленностью, это оказалось эффективной концепцией производства энергии, при сохранении окружающей среды. Таким образом, финская централизованная система теплоснабжения базировалась на принципе ТЭЦ с самого начала.

Приблизительно половина зданий в Финляндии подключена к централизованной системе теплоснабжения. В самых крупных городах, эта цифра превышает 90 процентов. Большинство офисных и общественных зданий в стране, также, подключены к централизованной системе теплоснабжения. ТЭЦ обеспечивают примерно три четверти тепла, потребляемого ежегодно. Если сравнивать раздельное производство электрической и тепловой энергии, когенерация позволяет сэкономить, приблизительно треть топлива. Большинство теплопроизводящих компаний, принадлежит муниципалитетам, но доля частных предприятий постоянно увеличивается.

Централизованное теплоснабжение обеспечивает необходимую тепловую нагрузку для ТЭЦ, и это дает большой потенциал для использования возобновляемых источников энергии, типа биотоплива и отходов. Цель Европейского союза, удвоение доли когенерации в производстве энергии, не может быть достигнута без дальнейшего развития этой сферы. Таким образом, централизованное теплоснабжение, должно быть признано важной темой в повестке дня европейской энергетической политики.

ТЭЦ для централизованной системы охлаждения

Если говорить о централизованном теплоснабжении, охлаждение зданий, может также происходить, при помощи тепловой энергии. В течение зимних месяцев высокая температура используется для нагрева помещений, но в летнее время, тепла требуется немного. Это избыточное тепло, может использоваться для производства холода в системе кондиционирования помещений.

Централизованная система охлаждения существует сегодня, только в трех финских городах, но перспективы многообещающие. На сегодняшний день, централизованная система охлаждения в Хельсинки, самая крупная в Финляндии. Тридцать процентов холода получается за счет холодной морской воды, посредством простых теплообменников.


Использование ТЭЦ позволяет производить энергию наиболее экономически выгодным путем

Основная задача ТЭЦ - производить энергию наиболее экономически выгодным путем. Поэтому, комбинированное производство тепла и электроэнергии должно быть дешевле альтернативных способов. Доходность различных вариантов производства должна быть предварительно оценена для полного периода эксплуатации электростанции. ТЭЦ обычно требует больших инвестиций, чем обычные технологии производства энергии, но она потребляет меньше топлива.

В результате, ТЭЦ более дешевы в эксплуатации, чем электростанции схожей мощности. Тепло, производимое ТЭЦ, может использоваться как для централизованного теплоснабжения жилых районов, так и для промышленных нужд. Передача тепла на длинные расстояния является дорогостоящей. Поэтому лучше строить ТЭЦ близко к населенным пунктам и промышленным объектам, где тепловая энергия будет использоваться.



Высокая эффективность

ТЭЦ максимально используют энергию сгорающего топлива, производя электричество и тепло с минимальными потерями. Их КПД достигает 80 - 90 процентов. В то время, как обычные конденсационные электростанции достигают КПД 35 - 40 процентов.

Высокая отказоустойчивость

ТЭЦ имеют высокий уровень отказоустойчивости, позволяя не прерывать процесс производства энергии. В то же самое время, ТЭЦ высоко автоматизированы, таким образом, минимизируя число требуемого персонала и сокращая затраты на эксплуатацию и обслуживание.

Производство электричества и тепла могут быть легко приведены в соответствие с уровнем потребления, который может изменяться очень быстро. Надежность системы централизованного теплоснабжения в Финляндии в течение отопительного сезона, составляет 99,98 процента.

В среднем, теплоснабжение для отдельно взятого клиента, в течение отопительного периода, прерывается только один раз в шесть



Широкий спектр используемого топлива

В комбинированном производстве тепловой и электрической энергии может использоваться широкий спектр видов топлива, включая низкокалорийное и влажное, например индустриальные отходы и биотопливо. Оптимальная комбинация различных видов топлива определяется для каждой ТЭЦ в отдельности, в зависимости от местной ситуации с топливом. Обычно используются следующие виды топлива: природный газ, уголь, промышленные газы, торф и другие виды возобновляемых ресурсов (например, отходы деловой древесины, муниципальные отходы и древесная щепа). Мазут используется в небольших количествах, обычно в качестве подсветки для других топлив.

Традиционно, использование биотоплива при когенерации, связано с технологическими процессами лесной промышленности. По многим причинам, ТЭЦ - идеально подходит для использования биотоплива. Поскольку их теплотворная способность низка, а транспортировка дорогостояща, они имеют тенденцию быть местными видами топлива.



Эффективное производство энергии наносит меньший вред природе

Высокая эффективность и низкий уровень выбросов в процессе когенерации, самый приемлемый, с точки зрения окружающей среды, способ производства энергии. Современные ТЭЦ используют эффективные методы сжигания топлива, чтобы снизить выбросы окислов азота.

Снижение количества сжигаемого для производства энергии топлива, уменьшает негативное влияние на окружающую среду. Например, количество выбрасываемого углекислого газа, при сжигании ископаемого топлива, снижается в зависимости от количества используемого топлива. То же самое происходит и с такими загрязняющими веществами, как сера и окислы азота.

Изучение качества воздуха в крупнейших городах Финляндии показывает, что выбросы серы серьезно снизились и это является прямым результатом использования технологии когенерации и централизованной системы теплоснабжения.



Все преимущества использования ТЭЦ, с точки зрения воздействия на окружающую среду, были осознаны в течение нескольких последних лет. Не смотря на это, экономическая сторона дела, играет решающую роль при принятии решения о постройке того или иного типа источника энергии. Поэтому стоимость энергии произведенной в процессе когенерации, должна быть конкурентоспособной по сравнению с другими источниками энергии.

ТЭЦ и централизованная система теплоснабжения поддерживаются властями, потому что являются мощными инструментами для снижения выбросов углекислого газа. Целью энергетической стратегии Финляндии, является приведение выбросов углекислого газа в соответствие с Киотским Протоколом, в котором говорится, что к 2010 году, уровень выбросов должен быть снижен до показателей 1990 года. Благодаря централизованной системе теплоснабжения и ТЭЦ, в 2004 году Финляндия снизила выбросы углекислого газа в атмосферу на 8 миллионов тонн. Что равно, примерно, трем четвертям планового годового снижения выбросов в соответствии с Киотским Протоколом.


Широкий спектр применения ТЭЦ

Эволюция технологии ТЭЦ, в данный момент, идет в сторону уменьшения мощности. Небольшие источники позволяют в больших количествах

использовать местные виды топлива, такие как: древесина и другие возобновляемые виды, и отказаться от вторичных энергоносителей природных горючих ископаемых.

Технологии предварительной подсушки топлива могут увеличить теплопроизводительность процесса когенерации. Другие современные технологии сжигания, например, газификация или сжигание при избыточном давлении, повышающие производство электроэнергии на ТЭЦ, находятся сейчас на стадии развития. Все это делается для того, чтобы малые ТЭЦ могли быть конкурентоспособными.

Улучшение технологии производства электроэнергии, приведет к увеличению производства тепла. Технология комбинированного цикла, основанная на газификации твердого топлива, может привести к интересным результатам. В этом случае, газ может быть использован в газовой турбине, а выработанное тепло, будет работать в паровой турбине. В этом случае, соотношение производимого электричества и тепла может быть 1:1, сейчас оно составляет 0.5.

Огромный рыночный потенциал существует для использования когенерации для выработки энергии из различных отходов.



Энергетическая политика Финляндии и ТЭЦ

Энергетическая политика Финляндии базируется на трех китах: энергия, экономика и окружающая среда. Устойчивое и безопасное энергоснабжение, конкурентоспособные цены на энергию и минимизация негативного воздействия на окружающую среду, в соответствии с международными обязательствами. Основным и самым важным фактором, влияющим на энергетическую политику, является международное сотрудничество в области снижения выбросов парникового газа. Среди других факторов, влияющих на энергетическую политику, нужно выделить необходимость предотвращения экологических катастроф и адаптирование экономической активности к принципам устойчивого развития.

Когенерация всегда играла основную роль в энергетической политике Финляндии и останется важнейшей ее частью и в будущем. Комбинированный цикл является эффективным способом производства тепла и электроэнергии. Он способствует развитию местных возобновляемых источников энергии. Все эти моменты означают только одно - ТЭЦ является огромным вкладом в снижение выбросов парниковых газов.



В соответствии с решением Правительства, для бесперебойного и безопасного энергоснабжения, необходимо обеспечить производство энергии, основываясь на нескольких видах топлива, поставляемого из различных источников. Целью является создание в будущем гибкой, децентрализованной и сбалансированной энергетической системы. Со своей стороны, Правительство продолжает обеспечить все условия для создания подобной системы, и фокусируется на энергии, произведенной в своей стране, другими словами на возобновляемых энергетических ресурсах и биотопливе.

Правительство, и в будущем, продолжит поддерживать комбинированный цикл производства тепла и электричества. Предпосылкой решений, касательно источников энергии является то, что потребление тепла должно быть с наибольшей эффективностью связано с процессом когенерации. Достаточное внимание, также, должно быть уделено техническому и экономическому аспектам. Высокий статус процесса когенерации определен тем, что общая эффективность источников энергии является важным фактором в области выделенных квот на вредные выбросы. Инвестируя в постоянное развитие технологии, возможно во всеоружии подойти к моменту в будущем, когда обязательства по снижению выбросов парниковых газов, станут очень жесткими. Кроме технологии, развитие сосредотачивается на всей цепочке эксплуатации, доставки и торговли. Возобновляемые источники энергии и энергоэффективность, остаются важными секторами. Постоянные и интенсивные инвестиции послужат разработке и внедрению в жизнь новых, экономичных решений для процесса когенерации, промышленного производства энергии, малой энергетики и эффективного использования энергии.

Правительственные инвестиции, в основном, будут направлены в проекты, внедряющие новые энергетические технологии, с одной стороны, и связанные с особыми технологическими рисками, связанными с демонстрационным характером этих проектов.






Высокоэффективная технология комбинированного цикла

Компания Helsinki Energy

Благодаря своей передовой технологии сжигания газа, ТЭЦ района Vuosaari в Хельсинки, являются одними из самых эффективных и чистых. На них применяется технология комбинированного цикла, при которой скомбинировано два процесса - газовая и паровая турбины. Если сравнивать традиционную схему производства энергии с технологией комбинированного цикла, то во втором случае, мы имеем более высокую эффективность в производстве электричества и, соответственно более высокий выход электроэнергии, в пропорции к производимой тепловой энергии.

В процессе комбинированного цикла, ТЭЦ Vuosaari достигает КПД, превышающий 90 процентов, т. е. теряется менее 10 процентов произведенной энергии. Если мы говорим о потерях энергии, то это чаще всего, тепловые потери. Тепло теряется с дымовыми газами, охлаждающей жидкостью, а также, самом процессе производства.

Производство электроэнергии - 630 МВт

Производство тепла - 580 МВт

Топливо - природный газ 650-800 миллионов м3/г



Малые ТЭЦ с процессом газификации


Компания Kokem ä en Lampo Oy

Первые малые ТЭЦ, работающие по технологии Novel, газификации топлива в слое, были построены в 2004 году. Станция оборудована полной технологической цепочкой газоочистки, состоящей из установки реформинга газа, фильтра и кислотно-щелочного скруббера для удаления остатков азотных соединений. Для производства электричества используются три газовые турбины по 0.6 мВт и один газовый котел для регенерации тепла.

Газификатор Novel является новой разработкой, принцип его действия основан на подаче топлива под давлением, такой способ дает возможность использования волокнистого биотоплива с низкой объемной плотностью. В газификаторе может использоваться широкий спектр отходов биологического происхождения с влажностью от 0 до 55 процентов и размером частиц от опилок до крупной щепы.

Производство электроэнергии – 1.8 МВт

Производство тепла – 4.3 МВт

Тепловая мощность топливосушилки 429 кВт

Емкость топливохранилища – 7.2 МВт


Комплексный подход для достижения рентабельности

Компания Vapo Oy

Постройка ТЭЦ, расширение и модернизация производства топливных гранул в Ilomantsi были завершены в ноябре 2005 года. ТЭЦ была оборудована котлом для сжигания в «кипящим слое». Модернизация производства топливных гранул заключалась в постройке нового приемника для сырья, сушилки, третьей линии для производства гранул, системы конвейеров и бункера. ТЭЦ, производство гранул и сушилка управляются из одной диспетчерской. В качестве топлива используются фрезерный торф и древесина. Потребление топлива, примерно 75 ГВт в год.

Емкость топливохранилища – 23 МВт

Производство тепла для теплоснабж. – 8 МВт


От каменного угля к биотопливу


Компания Porvoon Energia Oy

ТЭЦ Tolkkinen была переведена с каменного угля на биомассу. Компания, хотела убить двух зайцев одним выстрелом - снизить потребление угля и снизить нагрузку на окружающую среду. Котел с цепной колосниковой решёткой был заменен котлом с «кипящем слоем» в 2000 году. Это предоставило хорошую возможность использовать различные типы древесины и древесных отходов в качестве топлива. Одновременно, были модернизированы системы подачи воздуха, отсоса дымовых газов, сбора золы, подачи топлива, контрольные приборы и автоматика. Скруббер для утилизации отходящего тепла, который сможет поднять эффективность станции на более чем 7 МВт, будет достроен в 2006 году.

Емкость топливохранилища – 54 МВт

Производство пара – 46 МВт

Производство электроэнергии 7 МВт

Производство тепла – 25 МВт


Энергия для ЦБК и системы теплоснабжения

Компания Kymin Voima Oy

ТЭЦ Kymin Voima находится в собственности компаний Pohjolan Voima Oy и Kouvolan Seudun Sahko Oy. Она расположена на ЦБК компании UPM Kymi, на ТЭЦ используется технология сжигания топлива в «кипящем слое». Она производит энергию, как для технологического процесса, так и для систем централизованного

теплоснабжения городов Kouvola и Kuusankoski. В качестве топлива используются: древесная кора, рубочные отходы, шламы, торф, газ и мазут. Потребление топлива составляет примерно 2,100 ГВт/год.

Производство электроэнергии – 76 МВт

Технологический пар – 125 MWth

Пр-во технологического тепла – 15 MWth

Производство тепла для теплоснабж. – 40 MWth


ТЭЦ Forssa сжигает только древесину

Компания Vapo Oy

Forssa Bio Power Plant - первая в Финляндии ТЭЦ (1996 год), в системе централизованного теплоснабжения, использующая в качестве топлива только древесину. Для промышленных нужд древесное топливо, широко использовалось и до этого. Процесс сжигания происходит в «кипящем слое». Эта технология позволяет применять практически все остальные доступные виды топлива. Основным видом топлива, являются отходы деревообрабатывающей промышленности. Например опилки и кора, вместе с рубочными отходами и отходами строительства. При сжигании древесины не происходит выбросов серы, а выбросы окислов азота незначительны.

Производство электроэнергии – 17 МВт

Производство тепла для теплоснабж. – 48 МВт


Гибкая технология

Компания Oy Ahlholmens Kraft Ab

ТЭЦ AK2 принадлежит компании Oy Ahlholmens Kraft Ab. Теплоисточник гибок в эксплуатации, поэтому вне зависимости от объемов выработки электричества, тепло производится в том количестве, которое необходимо в данный момент. КПД установки при производстве тепла, составляет более 80%, поэтому, производство не наносит ущерба окружающей среде. Тепло поставляется в город Pietarsaari и на ЦБК компании UPM.

Основными видами топлива являются уголь и различные виды биотоплива. Такие как: древесная кора, щепа, другие отходы лесной промышленности и торф.

Производство электроэнергии – 240 МВт

Технологический пар – 100 МВт

Производство тепла для теплоснабж. – 60 МВт

Назначение теплоэлектроцентралей. Принципиальная схема ТЭЦ

ТЭЦ (теплоэлектроцентрали) - предназначены для централизованного снабжения потребителей теплом и электроэнергией. Их отличие от КЭС в том, что они используют тепло отработавшего в турбинах пара для нужд производства, отопления, вентиляции и горячего водоснабжения. Из-за такого совмещения выработки электроэнергии и тепла достигается значительная экономия топлива в сравнении с раздельным энергоснабжением (выработкой электроэнергии на КЭС и тепловой энергии на местных котельных). Благодаря такому способу комбинированного производства, на ТЭЦ достигается достаточно высокий КПД, доходящий до 70%. Поэтому ТЭЦ получили широкое распространение в районах и городах с высоким потреблением тепла. Максимальная мощность ТЭЦ меньше, чем КЭС.

ТЭЦ привязаны к потребителям, т.к. радиус передачи теплоты (пара, горячей воды) составляет приблизительно 15 км. Загородные ТЭЦ передают горячую воду при более высокой начальной температуре на расстояние до 30 км. Пар для производственных нужд давлением 0.8-1.6 МПа может быть передан на расстояние не более 2-3 км. При средней плотности тепловой нагрузки мощность ТЭЦ обычно не превышает 300-500 МВт. Только в крупных городах, таких как Москва или Санкт-Петербург с большой плотностью тепловой нагрузки имеет смысл строить станции мощностью до 1000-1500 МВт.

Мощность ТЭЦ и тип турбогенератора выбирают в соответствии с потребностями в тепле и параметрами пара, используемого в производственных процессах и для отопления. Наибольшее применение получили турбины с одним и двумя регулируемыми отборами пара и конденсаторами (см. рис). Регулируемые отборы позволяют регулировать выработку тепла и электроэнергии.

Режим ТЭЦ - суточный и сезонный - определяется в основном потреблением тепла. Станция работает наиболее экономично, если ее электрическая мощность соответствует отпуску тепла. При этом в конденсаторы поступает минимальное количество пара. Зимой, когда спрос на тепло максимален, при расчетной температуре воздуха в часы работы промпредприятий нагрузка генераторов ТЭЦ близка к номинальной. В периоды, когда потребление тепла мало, например летом, а также зимой при температуре воздуха выше расчетной и в ночные часы электрическая мощность ТЭЦ, соответствующая потреблению тепла, уменьшается. Если энергосистема нуждается в электрической мощности, ТЭЦ должна перейти в смешанный режим, при котором увеличивается поступление пара в части низкого давления турбин и в конденсаторы. Экономичность электростанции при этом снижается.

Максимальная выработка электроэнергии теплофикационными станциями "на тепловом потреблении" возможна только при совместной работе с мощными КЭС и ГЭС , принимающими на себя значительную часть нагрузки в часы снижения потребления тепла.



1 – электрический генератор; 2 – паровая турбина; 3 – пульт управления; 4 – деаэратор; 5 и 6 – бункеры; 7 – сепаратор; 8 – циклон; 9 – котел; 10 – поверхность нагрева (теплообменник); 11 – дымовая труба; 12 – дробильное помещение; 13 – склад резервного топлива; 14 – вагон; 15 – разгрузочное устройство; 16 – конвейер; 17 – дымосос; 18 – канал; 19 – золоуловитель; 20 – вентилятор; 21 – топка; 22 – мельница; 23 – насосная станция; 24 – источник воды; 25 – циркуляционный насос; 26 – регенеративный подогреватель высокого давления; 27 – питательный насос; 28 – конденсатор; 29 – установка химической очистки воды; 30 – повышающий трансформатор; 31 – регенеративный подогреватель низкого давления; 32 – конденсатный насос.

На схеме, представленной ниже, отображен состав основного оборудования тепловой электрической станции и взаимосвязь ее систем. По этой схеме можно проследить общую последовательность технологических процессов протекающих на ТЭС.

Обозначения на схеме ТЭС:

  1. Топливное хозяйство;
  2. подготовка топлива;
  3. промежуточный пароперегреватель;
  4. часть высокого давления (ЧВД или ЦВД);
  5. часть низкого давления (ЧНД или ЦНД);
  6. электрический генератор;
  7. трансформатор собственных нужд;
  8. трансформатор связи;
  9. главное распределительное устройство;
  10. конденсатный насос;
  11. циркуляционный насос;
  12. источник водоснабжения (например, река);
  13. (ПНД);
  14. водоподготовительная установка (ВПУ);
  15. потребитель тепловой энергии;
  16. насос обратного конденсата;
  17. деаэратор;
  18. питательный насос;
  19. (ПВД);
  20. шлакозолоудаление;
  21. золоотвал;
  22. дымосос (ДС);
  23. дымовая труба;
  24. дутьевой вентилятов (ДВ);
  25. золоуловитель.

Описание технологической схемы ТЭС:

Обобщая все вышеописанное, получаем состав тепловой электростанции:

  • топливное хозяйство и система подготовки топлива;
  • котельная установка: совокупность самого котла и вспомогательного оборудования;
  • турбинная установка: паровая турбина и ее вспомогательное оборудование;
  • установка водоподготовки и конденсатоочистки;
  • система технического водоснабжения;
  • система золошлокоудаления (для ТЭС, работающих, на твердом топливе);
  • электротехническое оборудование и система управления электрооборудованием.

Топливное хозяйство в зависимости от вида используемого на станции топлива включает приемно-разгрузочное устройство, транспортные механизмы, топливные склады твердого и жидкого топлива, устройства для предвари-тельной подготовки топлива (дробильные установки для угля). В состав ма-зутного хозяйства входят также насосы для перекачки мазута, подогреватели мазута, фильтры.

Подготовка твердого топлива к сжиганию состоит из размола и сушки его в пылеприготовительной установке, а подготовка мазута заключается в его подогреве, очистке от механических примесей, иногда в обработке спецприсадками. С газовым топливом все проще. Подготовка газового топлива сводится в основном к регулированию давления газа перед горелками котла.

Необходимый для горения топлива воздух подается в топочное пространство котла дутьевыми вентиляторами (ДВ). Продукты сгорания топлива — дымовые газы — отсасываются дымососами (ДС) и отводятся через дымовые трубы в атмосферу. Совокупность каналов (воздуховодов и газоходов) и различных элементов оборудования, по которым проходит воздух и дымовые газы, образует газовоздушный тракт тепловой электростанции (теплоцентрали). Входящие в его состав дымососы, дымовая труба и дутьевые вентиляторы составляют тягодутьевую установку. В зоне горения топлива входящие в его состав негорючие (минеральные) примеси претерпевают химико-физические превращения и удаляются из котла частично в виде шлака, а значительная их часть выносится дымовыми газами в виде мелких частиц золы. Для защиты атмосферного воздуха от выбросов золы перед дымососами (для предотвращения их золового износа) устанавливают золоуловители.

Шлак и уловленная зола удаляются обычно гидравлическим способом на золоотвалы.

При сжигании мазута и газа золоуловители не устанавливаются.

При сжигании топлива химически связанная энергия превращается в тепловую. В результате образуются продукты сгорания, которые в поверхностях нагрева котла отдают теплоту воде и образующемуся из нее пару.

Совокупность оборудования, отдельных его элементов, трубопроводов, по которым движутся вода и пар, образуют пароводяной тракт станции.

В котле вода нагревается до температуры насыщения, испаряется, а образующийся из кипящей котловой воды насыщенный пар перегревается. Из котла перегретый пар направляется по трубопроводам в турбину, где его тепловая энергия превращается в механическую, передаваемую на вал турбины. Отработавший в турбине пар поступает в конденсатор, отдает теплоту охлаждающей воде и конденсируется.

На современных ТЭС и ТЭЦ с агрегатами единичной мощностью 200 МВт и выше применяют промежуточный перегрев пара. В этом случае турбина имеет две части: часть высокого и часть низкого давления. Отработавший в части высокого давления турбины пар направляется в промежуточный перегреватель, где к нему дополнительно подводится теплота. Далее пар возвращается в турбину (в часть низкого давления) и из нее поступает в конденсатор. Промежуточный перегрев пара увеличивает КПД турбинной установки и повышает надежность ее работы.

Из конденсатора конденсат откачивается конденсационным насосом и, пройдя через подогреватели низкого давления (ПНД), поступает в деаэратор. Здесь он нагревается паром до температуры насыщения, при этом из него выделяются и удаляются в атмосферу кислород и углекислота для предотвращения коррозии оборудования. Деаэрированная вода, называемая питательной, насосом подается через подогреватели высокого давления (ПВД) в котел.

Конденсат в ПНД и деаэраторе, а также питательная вода в ПВД подогреваются паром, отбираемым из турбины. Такой способ подогрева означает возврат (регенерацию) теплоты в цикл и называется регенеративным подогревом. Благодаря ему уменьшается поступление пара в конденсатор, а следовательно, и количество теплоты, передаваемой охлаждающей воде, что приводит к повышению КПД паротурбинной установки.

Совокупность элементов, обеспечивающих конденсаторы охлаждающей водой, называется системой технического водоснабжения. К ней относятся: источник водоснабжения (река, водохранилище, башенный охладитель — градирня), циркуляционный насос, подводящие и отводящие водоводы. В конденсаторе охлаждаемой воде передается примерно 55% теплоты пара, поступающего в турбину; эта часть теплоты не используется для выработки электроэнергии и бесполезно пропадает.

Эти потери значительно уменьшаются, если отбирать из турбины частично отработавший пар и его теплоту использовать для технологических нужд промышленных предприятий или подогрева воды на отопление и горячее водоснабжение. Таким образом, станция становится теплоэлектроцентралью (ТЭЦ), обеспечивающей комбинированную выработку электрической и тепловой энергии. На ТЭЦ устанавливаются специальные турбины с отбором пара — так называемые теплофикационные. Конденсат пара, отданного тепловому потребителю, возвращается на ТЭЦ насосом обратного конденсата.

На ТЭС существуют внутренние потери пара и конденсата, обусловленные неполной герметичностью пароводяного тракта, а также невозвратным расходом пара и конденсата на технические нужды станции. Они составляют приблизительно 1 — 1,5% от общего расхода пара на турбины.

На ТЭЦ могут быть и внешние потери пара и конденсата, связанные с отпуском теплоты промышленным потребителям. В среднем они составляют 35 — 50%. Внутренние и внешние потери пара и конденсата восполняются предварительно обработанной в водоподготавливающей установке добавочной водой.

Таким образом, питательная вода котлов представляет собой смесь турбинного конденсата и добавочной воды.

Электротехническое хозяйство станции включает электрический генератор, трансформатор связи, главное распределительное устройство, систему электроснабжения собственных механизмов электростанции через трансформатор собственных нужд.

Система управления осуществляет сбор и обработку информации о ходе технологического процесса и состоянии оборудования, автоматическое и дистанционное управление механизмами и регулирование основных процессов, автоматическую защиту оборудования.