Работает реактор аэс. Как работает ядерный (атомный) реактор. Атомные электростанции с трехконтурным реактором

Ядерный реактор работает слаженно и четко. Иначе, как известно, будет беда. Но что там творится внутри? Попытаемся сформулировать принцип работы ядерного (атомного) реактора кратко, четко, с остановками.

По сути, там творится тот же процесс, что и при ядерном взрыве. Только вот взрыв происходит очень быстро, а в реакторе все это растягивается на длительное время. В итоге все остается целым и невредимым, а мы получаем энергию. Не столько, чтобы все вокруг сразу разнесло, но вполне достаточную для того, чтобы обеспечить электричеством город.


Прежде чем понять, как идет управляемая ядерная реакция, нужно узнать, что такое ядерная реакция вообще.

Ядерная реакция – это процесс превращения (деления) атомных ядер при взаимодействии их с элементарными частицами и гамма-квантами.

Ядерные реакции могут проходить как с поглощением, так и с выделением энергии. В реакторе используются вторые реакции.

Ядерный реактор – это устройство, назначением которого является поддержание контролируемой ядерной реакции с выделением энергии.

Часто ядерный реактор называют еще и атомным. Отметим, что принципиальной разницы тут нет, но с точки зрения науки правильнее использовать слово "ядерный". Сейчас существует множество типов ядерных реакторов. Это огромные промышленные реакторы, предназначенные для выработки энергии на электростанциях, атомные реакторы подводных лодок, малые экспериментальные реакторы, используемые в научных опытах. Существуют даже реакторы, применяемые для опреснения морской воды.


История создания атомного реактора

Первый ядерный реактор был запущен в не таком уж и далеком 1942 году. Произошло это в США под руководством Ферми. Этот реактор назвали "Чикагской поленницей".

В 1946 году заработал первый советский реактор, запущенный под руководством Курчатова. Корпус этого реактора представлял собой шар семи метров в диаметре. Первые реакторы не имели системы охлаждения, и мощность их была минимальной. К слову, советский реактор имел среднюю мощность 20 Ватт, а американский – всего 1 Ватт. Для сравнения: средняя мощность современных энергетических реакторов составляет 5 Гигаватт. Менее чем через десять лет после запуска первого реактора была открыта первая в мире промышленная атомная электростанция в городе Обнинске.


Принцип работы ядерного (атомного) реактора

У любого ядерного реактора есть несколько частей: активная зона с топливом и замедлителем , отражатель нейтронов , теплоноситель , система управления и защиты . В качестве топлива в реакторах чаще всего используются изотопы урана (235, 238, 233), плутония (239) и тория (232). Активная зона представляет собой котел, через который протекает обычная вода (теплоноситель). Среди других теплоносителей реже используется «тяжелая вода» и жидкий графит. Если говорить про работу АЭС, то ядерный реактор используется для получения тепла. Само электричество вырабатывается тем же методом, что и на других типах электростанций - пар вращает турбину, а энергия движения преобразуется в электрическую энергию.

Приведем ниже схему работы ядерного реактора.


Как мы уже говорили, при распаде тяжелого ядра урана образуются более легкие элементы и несколько нейтронов. Образовавшиеся нейтроны сталкиваются с другими ядрами, также вызывая их деление. При этом количество нейтронов растет лавинообразно.

Здесь нужно упомянуть коэффициент размножения нейтронов . Так, если этот коэффициент превышает значение, равное единице, происходит ядерный взрыв. Если значение меньше единицы, нейтронов слишком мало и реакция угасает. А вот если поддерживать значение коэффициента равным единице, реакция будет протекать долго и стабильно.


Вопрос в том, как это сделать? В реакторе топливо находится в так называемых тепловыделяющих элементах (ТВЭЛах). Это стержни, в которых в виде небольших таблеток находится ядерное топливо . ТВЭЛы соединены в кассеты шестигранной формы, которых в реакторе могут быть сотни. Кассеты с ТВЭЛами располагаются вертикально, при этом каждый ТВЭЛ имеет систему, позволяющую регулировать глубину его погружения в активную зону. Помимо самих кассет среди них располагаются управляющие стержни и стержни аварийной защиты . Стержни изготовлены из материала, хорошо поглощающего нейтроны. Так, управляющие стержни могут быть опущены на различную глубину в активной зоне, тем самым регулируя коэффициент размножения нейтронов. Аварийные стержни призваны заглушить реактор в случае чрезвычайной ситуации.


Как запускают ядерный реактор?

С самим принципом работы мы разобрались, но как запустить и заставить реактор функционировать? Грубо говоря, вот он - кусок урана, но ведь цепная реакция не начинается в нем сама по себе. Дело в том, что в ядерной физике существует понятие критической массы .


Критическая масса – это необходимая для начала цепной ядерной реакции масса делящегося вещества.

При помощи ТВЭЛов и управляющих стержней в ректоре сначала создается критическая масса ядерного топлива, а потом реактор в несколько этапов выводится на оптимальный уровень мощности.

В данной статье мы постарались дать Вам общее представление об устройстве и принципе работы ядерного (атомного) реактора. Если у Вас остались вопросы по теме или в университете задали задачу по ядерной физике – обращайтесь к специалистам нашей компании . Мы, как обычно, готовы помочь Вам решить любой насущный вопрос по учебе. А пока мы этим занимаемся, Вашему вниманию очередное образовательное видео!

Атомная энергетика - одна из самых развивающихся областей промышленности, что продиктовано постоянным ростом потребляемой электроэнергии. Очень многие страны имеют свои источники выработки энергии при помощи «мирного атом».

Карта атомных электростанции России (РФ)

Россия входит в это число. История АЭС России начинается с далекого 1948 года, когда изобретатель советской атомной бомбы И.В. Курчатов инициировал проектирование первой атомной электростанции на территории тогда еще Советского Союза. Атомные станции России берут свое начало с постройки Обнинской АЭС, которая стала не только первой в России, но первой в мире атомной станцией.


Россия уникальная страна, которая обладает технологией полного цикла атомной энергетики, что подразумевает под собой все этапы, от добычи руды до конечного получения электроэнергии. При этом благодаря своим большим территориям, Россия обладает достаточным запасом урана, как в виде земных недр, так и в виде оружейного оснащения.

На настоящий момент ядерные электростанции в России включают в себя 10 действующих объектов, которые обеспечивают мощность в 27 ГВт (ГигаВатт), что составляет примерно 18% в энергетическом балансе стране. Современное развитие технологии позволяет сделать атомные электростанции России безопасными для окружающей среды объектами, несмотря на то, что использование атомной энергии является наиболее опасным производством с точки зрения промышленной безопасности.


Карта ядерных электростанции (АЭС) России включает в себя не только действующие станции, но также строящиеся, которых насчитывается порядка 10 штук. При этом к строящимся относятся не только полноценные атомные станции, но также перспективные разработки в виде создания плавучей атомной станции, которая отличается мобильностью.

Список атомных электростанций России имеет следующий вид:



Современное состояние атомной энергетики России позволяет говорить о наличии большого потенциала, который в обозримом будущем может реализоваться в создании и проектировании реакторов нового типа, позволяющих вырабатывать большие объемы энергии при меньших затратах.

Несмотря на то, что долгие годы не утихают споры вокруг атомных электростанций, большинство людей мало представляют себе, как АЭС вырабатывает электроэнергию, хотя наверняка знают какую-нибудь легенду про АЭС. В статье будет рассказано в общих чертах как работает атомная электростанция. Каких-то тайн и разоблачений ждать не стоит, но кто-нибудь узнает для себя что-то новенькое.
В статье будет описываются атомные реакторы типа ВВЭР (водо-водяные энергетические реакторы), как самые распространенные.

Видео о том как работает атомная электростанция

Принцип работы атомной электростанции - анимация


В активную зону реактора загружены тепловыделяющие сборки, состоящие из пучка циркониевых тепловыделяющих элементов (ТВЭЛов), заполненных таблетками двуокиси урана.


Тепловыделяющая сборка реактора АЭС в натуральную величину

Деление ядер урана внутри атомного реактора

Ядра урана делятся с образованием нейтронов (2 или 3 нейтрона), которые, попадая в другие ядра, также могут вызывать их деление. Так возникает цепная ядерная реакция. При этом отношение числа образовавшихся нейтронов к числу нейтронов на предыдущем шаге деления называется коэффициентом размножения нейтронов k. Если k<1, реакция затухает. При к=1 идёт самоподдерживающаяся цепная ядерная реакция. Когда k>1, реакция ускоряется, вплоть до ядерного взрыва. В ядерных реакторах поддерживается управляемая цепная ядерная реакция, удерживая k близкой к единице.



Реактор атомной электростанции с загруженными тепловыделяющими сборками

Как вырабатывается электроэнергия на АЭС

В ходе протекания цепной реакции выделяется большое количество энергии в виде тепла, которое нагревает теплоноситель первого контура - воду. Вода подается снизу в активную зону реактора с помощью главных циркуляционных насосов (ГЦН). Нагреваясь до температуры 322 °С вода поступает в парогенератор (теплообменник), где, пройдя по тысячам теплообменных трубок и отдав часть тепла воде второго контура, вновь поступает в активную зону.

Так как давление второго контура ниже, вода в парогенераторе вскипает, образуя пар с температурой 274°С, который поступает на турбину. Поступая в цилиндр высокого давления, а затем в три цилиндра низкого давления, пар раскручивает турбину, которая, в свою очередь, вращает генератор, вырабатывая электричество. Отработанный пар поступает в конденсатор, в котором он конденсируется с помощью холодной воды из пруда-охладителя или градирни и вновь возвращается в парогенератор с помощью питательных насосов.



Турбинное отделение АЭС и сама турбина

Такая сложная двухконтурная система создана для того, чтобы оградить оборудование АЭС (турбина, конденсатор), а также окружающую среду от попадания радиоактивных частиц из первого контура, появление которых возможно из-за коррозии оборудования, наведенной радиоактивности, а также разгерметизации оболочек ТВЭЛов.

Откуда и как управляют атомной электростанцией

Управление блоками АЭС осуществляется из блочного щита управления, который обычно сводит простого обывателя обилием «лампочек, крутилочек и кнопочек».

Щит управления расположен в реакторном отделении, но в «чистой зоне» и на нем постоянно находятся:

  • ведущий инженер по управлению реактором
  • ведущий инженер по управлению турбинами
  • ведущий инженер по управлению блоком
  • начальник смены блока


Территория АЭС

Вокруг атомной станции организуется зона наблюдения (та самая тридцатикилометровая зона), в которой ведется постоянный мониторинг радиационной обстановки. Также существует санитарно-защитная зона радиусом 3 км (зависит от проектной мощности АЭС), в которой запрещено проживание людей, а также ограничена сельскохозяйственная деятельность.

Зоны доступа атомной электростанции

Внутренняя территория АЭС разделена на две зоны: зона свободного доступа (чистая зона), где воздействие радиационных факторов на персонал практически исключено, и зону контролируемого доступа (ЗКД), где возможно воздействие радиации на персонал.

Доступ в ЗКД разрешен далеко не всем и возможен только через помещение санпропускника, после процедуры переодевания в спец. одежду и получения индивидуального дозиметра. Доступ в гермооболочку, в которой расположены сам реактор и оборудование первого контура, при работе реактора на мощности вообще запрещен и возможен лишь в исключительных случаях. Получаемые дозы работников АЭС строго фиксируются и нормируются, хотя фактическое облучение при нормальной работе реактора в сотни раз меньше предельных доз.


Дозиметрический контроль на выходе из ЗКД атомной электростанции

Наверное, самое большое число слухов и домыслов ходят вокруг выбросов атомных станций. Выбросы действительно есть и происходят они, в основном, через вентиляционные трубы - это те самые трубы, которые стоят возле каждого энергоблока и никогда не дымят. По большей части, в атмосферу попадают инертные радиоактивные газы - ксенон, криптон и аргон.
Но перед сбросом в атмосферу воздух из помещений АЭС проходит систему сложных фильтров, где удаляется большая часть радионуклидов. Короткоживущие изотопы распадаются еще до того, как газы достигнут верха трубы, еще больше снижая радиоактивность. В итоге, вклад в естественный радиационный фон газоаэрозольных выбросов АЭС в атмосферу незначителен и им вообще можно пренебречь. Поэтому атомная энергия является одной из самых чистых, в сравнении с другими электростанциями. В любом случае, все радиоактивные выбросы атомных станций строго контролируются экологами и разрабатываются способы дальнейшего их снижения.

Безопасность атомной электростанции

Все системы атомной станции проектируются и работают с учетом многочисленных принципов безопасности. Например, концепция глубоко эшелонированной защиты подразумевает наличие нескольких барьеров на пути распространения ионизирующего излучения и радиоактивных веществ в окружающую среду. Очень похоже на принцип Кащея Бессмертного: топливо сгруппировано в таблетки, которые находятся в циркониевых ТВЭЛах, которые помещены в стальной корпус реактора, который помещен в железобетонную гермооболочку. Таким образом, разрушение одного из барьеров компенсируется следующим. Делается все, чтобы при любой аварии радиоактивные вещества не вышли за пределы зоны контролируемого доступа.


Также, все системы имеют двух- и трехкратное резервирование, в соответствии с принципом единичного отказа, по которому система должна бесперебойно выполнять свои функции даже при отказе любого ее элемента. Вместе с этим применяется принцип разнообразия, то есть использования систем, имеющих разные принципы работы. Например, при срабатывании аварийной защиты в активную зону реактора падают стержни-поглотители и в теплоноситель первого контура дополнительно впрыскивается борная кислота.

Как ремонтируют атомные электростанции?

Энергоблоки регулярно выводятся в планово-предупредительные ремонты (ППР), в периоды которых происходит перегрузка топлива, а также производится диагностика, ремонт и замена оборудования, модернизация оборудования. дин раз в четыре года работающий энергоблок выводится в капитальный ППР с полной выгрузкой ядерного топлива из активной зоны реактора, обследованием и испытанием внутрикорпусных устройств, а также испытания корпуса реактора на прочность.

А́ТОМНАЯ ЭЛЕКТРОСТА́НЦИЯ (АЭС), элек­тро­стан­ция, на ко­то­рой для по­лу­че­ния элек­тро­энер­гии ис­поль­зу­ет­ся те­п­ло­та, вы­де­ляю­щая­ся в ядер­ном ре­ак­то­ре в ре­зуль­та­те кон­тро­ли­руе­мой цеп­ной ре­ак­ции де­ле­ния ядер тя­жё­лых эле­мен­тов (в осн. $\ce{^{233}U, ^{235}U, ^{239}Pu}$ ). Те­п­ло­та, об­ра­зую­щая­ся в ак­тив­ной зо­не ядер­но­го ре­ак­то­ра, пе­ре­да­ёт­ся (не­по­сред­ст­вен­но ли­бо че­рез про­ме­жу­точ­ный те­п­ло­но­си­тель ) ра­бо­че­му те­лу (пре­им. во­дя­но­му па­ру), ко­то­рое при­во­дит в дей­ст­вие па­ро­вые тур­би­ны с тур­бо­ге­не­ра­то­ра­ми.

АЭC в принципе является аналогом обычной тепловой электростанции (ТЭС), в которой вместо топки парового котла используется ядерный реактор. Однако при сходстве принципиальных термодинамических схем ядерных и тепловых энергоустановок между ними есть и существенные различия. Основными из них являются экологические и экономические преимущества АЭС перед ТЭС: АЭС не нуждаются в кислороде для сжигания топлива; они практически не загрязняют окружающую среду сернистыми и др. газами; ядерное топливо имеет значительно более высокую теплотворную способность (при делении 1г изотопов U или Pu высвобождается 22 500 кВт∙ч, что эквивалентно энергии, содержащейся в 3000 кг каменного угля), что резко сокращает его объёмы и расходы на транспортировку и обращение; мировые энергетические ресурсы ядерного топлива существенно превышают природные запасы углеводородного топлива. Кроме того, применение в качестве источника энергии ядерных реакторов (любого типа) требует изменения тепловых схем, принятых на обычных ТЭС, и введения в структуру АЭС новых элементов, напр. биологич. защиты (см. Радиационная безопасность ), системы перегрузки отработанного топлива, бассейна выдержки топлива и др. Передача тепловой энергии от ядерного реактора к паровым турбинам осуществляется посредством теплоносителя, циркулирующего по герметичным трубопроводам, в сочетании с циркуляционными насосами, образующими т. н. реакторный контур или петлю. В качестве теплоносителей применяют обычную и тяжёлую воду, водяной пар, жидкие металлы, органические жидкости, некоторые газы (например, гелий, углекислый газ). Контуры, по которым циркулирует теплоноситель, всегда замкнуты во избежание утечки радиоактивности, их число определяется в основном типом ядерного реактора, а также свойствами рабочего тела и теплоносителя.

На АЭС с одноконтурной схемой (рис., а ) теплоноситель является также и рабочим телом, весь контур радиоактивен и потому окружён биологической защитой. При использовании в качестве теплоносителя инертного газа, например гелия, который не активируется в нейтронном поле активной зоны, биологическая защита необходима только вокруг ядерного реактора, поскольку теплоноситель не радиоактивен. Теплоноситель – рабочее тело, нагреваясь в активной зоне реактора, затем поступает в турбину, где его тепловая энергия преобразуется в механическую и далее в электрогенераторе – в электрическую. Наиболее распространены одноконтурные АЭС с ядерными реакторами, в которых теплоносителем и замедлителем нейтронов служит вода. Рабочее тело образуется непосредственно в активной зоне при нагревании теплоносителя до кипения. Такие реакторы называют кипящими, в мировой ядерной энергетике они обозначаются как BWR (Boiling Water Reactor). В России получили распространение кипящие реакторы с водяным теплоносителем и графитовым замедлителем – РБМК (реактор большой мощности канальный). Перспективным считается использование на АЭС высокотемпературных газоохлаждаемых реакторов (с гелиевым теплоносителем) – ВТГР (HTGR). Кпд одноконтурных АЭС, работающих в закрытом газотурбинном цикле, может превышать 45–50%.

При двухконтурной схеме (рис., б ) нагретый в активной зоне теплоноситель первого контура передаёт в парогенераторе (теплообменнике ) тепловую энергию рабочему телу во втором контуре, после чего циркуляционным насосом возвращается в активную зону. Первичным теплоносителем может быть вода, жидкий металл или газ, а рабочим телом вода, превращающаяся в водяной пар в парогенераторе. Первый контур радиоактивен и окружается биологической защитой (кроме тех случаев, когда в качестве теплоносителя используется инертный газ). Второй контур обычно радиационно безопасен, поскольку рабочее тело и теплоноситель первого контура не соприкасаются. Наибольшее распространение получили двухконтурные АЭС с реакторами, в которых первичным теплоносителем и замедлителем служит вода, а рабочим телом – водяной пар. Этот тип реакторов обозначают как ВВЭР – водо-водяной энергетич. реактор (PWR – Power Water Reactor). Кпд АЭС с ВВЭР достигает 40%. По термодинамической эффективности такие АЭС уступают одноконтурным АЭС с ВТГР, если температура газового теплоносителя на выходе из активной зоны превышает 700 °С.

Трёхконтурные тепловые схемы (рис., в ) применяют лишь в тех случаях, когда необходимо полностью исключить контакт теплоносителя первого (радиоактивного) контура с рабочим телом; например, при охлаждении активной зоны жидким натрием его контакт с рабочим телом (водяным паром) может привести к крупной аварии. Жидкий натрий как теплоноситель применяют только в ядерных реакторах на быстрых нейтронах (FBR – Fast Breeder Reactor). Особенность АЭС с реактором на быстрых нейтронах состоит в том, что одновременно с выработкой электрической и тепловой энергии они воспроизводят делящиеся изотопы, пригодные для использования в тепловых ядерных реакторах (см. Реактор-размножитель ).

Турбины АЭС обычно работают на насыщенном или слабоперегретом паре. При использовании турбин, работающих на перегретом паре, насыщенный пар для повышения температуры и давления пропускают через активную зону реактора (по особым каналам) либо через специальный теплообменник – пароперегреватель, работающий на углеводородном топливе. Термодинамическая эффективность цикла АЭС тем выше, чем выше параметры теплоносителя, рабочего тела, которые определяются технологическими возможностями и свойствами конструкционных материалов, применяемых в контурах охлаждения АЭС.

На АЭС боль­шое вни­ма­ние уде­ля­ют очи­ст­ке те­п­ло­но­си­те­ля, по­сколь­ку имею­щие­ся в нём ес­тественные при­ме­си, а так­же про­дук­ты кор­ро­зии, на­ка­п­ли­ваю­щие­ся в про­цес­се экс­плуа­та­ции обо­ру­до­ва­ния и тру­бо­про­во­дов, яв­ля­ют­ся ис­точ­ни­ка­ми ра­дио­ак­тив­но­сти. Сте­пень чис­то­ты те­п­ло­но­си­те­ля во мно­гом оп­ре­де­ля­ет уро­вень ра­ди­ационной об­ста­нов­ки в по­ме­ще­ни­ях АЭС.

АЭС прак­ти­че­ски все­гда стро­ят вбли­зи по­тре­би­те­лей энер­гии, т. к. рас­хо­ды на транс­пор­ти­ров­ку ядер­но­го то­п­ли­ва на АЭС, в от­ли­чие от уг­ле­во­до­род­но­го то­п­ли­ва для ТЭС, ма­ло влия­ют на се­бе­стои­мость вы­ра­ба­ты­вае­мой энер­гии (обыч­но ядер­ное то­п­ли­во в энер­ге­тич. ре­ак­то­рах за­ме­ня­ют на но­вое один раз в неск. лет), а пе­ре­да­ча как элек­трической, так и те­п­ло­вой энер­гии на боль­шие рас­стоя­ния за­мет­но по­вы­ша­ет их стои­мость. АЭС со­ору­жа­ют с под­вет­рен­ной сто­ро­ны от­но­си­тель­но бли­жай­ше­го на­се­лён­но­го пунк­та, во­круг неё соз­да­ют са­ни­тар­но-за­щит­ную зо­ну и зо­ну на­блю­де­ния, где про­жи­ва­ние на­се­ле­ния не­до­пус­ти­мо. В зо­не на­блю­де­ния раз­ме­ща­ют кон­троль­но-из­ме­ри­тель­ную ап­па­ра­ту­ру для по­сто­ян­но­го мо­ни­то­рин­га ок­ру­жаю­щей сре­ды.

АЭС – ос­но­ва ядер­ной энер­ге­ти­ки . Глав­ное их на­зна­че­ние – про­изводство элек­тро­энер­гии (АЭС кон­ден­са­ци­он­но­го ти­па) или ком­би­нированное про­изводство элек­тро­энер­гии и те­п­ла (атом­ные те­п­ло­элек­тро­цен­тра­ли – АТЭЦ). На АТЭЦ часть от­ра­бо­тав­ше­го в тур­би­нах па­ра от­во­дит­ся в т. н. се­те­вые те­п­ло­об­мен­ни­ки для на­гре­ва­ния во­ды, цир­ку­ли­рую­щей в замк­ну­тых се­тях те­п­ло­снаб­же­ния. В отдельных слу­ча­ях те­п­ло­вая энер­гия ядер­ных ре­ак­то­ров мо­жет ис­поль­зо­вать­ся толь­ко для нужд те­п­ло­фи­ка­ции (атом­ные стан­ции те­п­ло­снаб­же­ния – АСТ). В этом слу­чае на­гре­тая во­да из те­п­ло­об­мен­ни­ков пер­во­го-вто­ро­го кон­ту­ров по­сту­па­ет в се­те­вой те­п­ло­об­мен­ник, где от­да­ёт те­п­ло се­те­вой во­де и за­тем воз­вра­ща­ет­ся в кон­тур.

Од­но из пре­иму­ществ АЭС по срав­не­нию с обыч­ны­ми ТЭС – их вы­со­кая эко­ло­гич­ность, со­хра­няю­щая­ся при ква­ли­фи­цир. экс­плуа­та­ции ядер­ных ре­ак­то­ров. Су­ще­ст­вую­щие барь­е­ры ра­ди­ационной безо­пас­но­сти АЭС (обо­лоч­ки твэ­лов, кор­пус ядер­но­го ре­ак­то­ра и т. п.) пред­от­вра­ща­ют за­гряз­не­ние те­п­ло­но­си­те­ля ра­дио­ак­тив­ны­ми про­дук­та­ми де­ле­ния. Над ре­ак­тор­ным за­лом АЭС воз­во­дит­ся за­щит­ная обо­лоч­ка (кон­тей­мент) для ис­клю­че­ния по­па­да­ния в ок­ру­жаю­щую сре­ду ра­дио­ак­тив­ных ма­те­риа­лов при са­мой тя­жё­лой ава­рии – раз­гер­ме­ти­за­ции пер­во­го кон­ту­ра, рас­плав­ле­нии ак­тив­ной зо­ны. Под­го­тов­ка пер­со­на­ла АЭС пре­ду­смат­ри­ва­ет обу­че­ние на специальных тре­на­жё­рах (ими­та­то­рах АЭС) для от­ра­бот­ки дей­ст­вий как в штат­ных, так и в ава­рий­ных си­туа­ци­ях. На АЭС име­ется ряд служб, обес­пе­чи­ваю­щих нор­маль­ное функ­цио­ни­ро­ва­ние стан­ции, безо­пас­ность её пер­со­на­ла (напр., до­зи­мет­рический кон­троль, обес­пе­че­ние са­ни­тар­но-ги­гие­нических тре­бо­ва­ний и др.). На тер­ри­то­рии АЭС соз­да­ют временные хра­ни­ли­ща для све­же­го и от­ра­бо­тан­но­го ядер­но­го то­п­ли­ва, для жид­ких и твёр­дых ра­дио­ак­тив­ных от­хо­дов, по­яв­ляю­щих­ся при её экс­плуа­та­ции. Всё это при­во­дит к то­му, что стои­мость ус­та­нов­лен­но­го ки­ло­ват­та мощ­но­сти на АЭС бо­лее чем на 30% пре­вы­ша­ет стои­мость ки­ло­ват­та на ТЭС. Од­на­ко стои­мость от­пус­кае­мой по­тре­би­те­лю энер­гии, вы­ра­бо­тан­ной на АЭС, ни­же, чем на ТЭС, из-за очень ма­лой до­ли в этой стои­мо­сти то­п­лив­ной со­став­ляю­щей. Вслед­ст­вие вы­со­кой эко­но­мич­но­сти и осо­бен­но­стей ре­гу­ли­ро­ва­ния мощ­но­сти АЭС обыч­но ис­поль­зу­ют в ба­зо­вых ре­жи­мах, при этом ко­эффициент ис­поль­зо­ва­ния ус­та­нов­лен­ной мощ­но­сти АЭС мо­жет пре­вы­шать 80%. По ме­ре уве­ли­че­ния до­ли АЭС в об­щем энер­ге­тическом ба­лан­се ре­гио­на они мо­гут ра­бо­тать и в ма­нёв­рен­ном ре­жи­ме (для по­кры­тия не­рав­но­мер­но­стей на­груз­ки в ме­ст­ной энер­го­сис­те­ме). Спо­соб­ность АЭС ра­бо­тать дли­тель­ное вре­мя без сме­ны то­п­ли­ва по­зво­ля­ет ис­поль­зо­вать их в уда­лён­ных ре­гио­нах. Раз­ра­бо­та­ны АЭС, ком­по­нов­ка обо­ру­до­ва­ния ко­то­рых ос­но­ва­на на прин­ци­пах, реа­ли­зуе­мых в су­до­вых ядер­ных энер­ге­тич. ус­та­нов­ках (см. Ато­мо­ход ). Та­кие АЭС мож­но раз­мес­тить, напр., на бар­же. Пер­спек­тив­ны АЭС с ВТГР, вы­ра­ба­ты­ваю­щие те­п­ло­вую энер­гию для осу­ще­ст­в­ле­ния тех­но­ло­гических про­цес­сов в ме­тал­лур­гическом, хи­мическом и неф­тяном про­из­вод­ст­вах, при га­зи­фи­ка­ции уг­ля и слан­цев, в про­изводстве син­те­тического угле­во­до­род­но­го то­п­ли­ва. Срок экс­плуа­та­ции АЭС 25–30 лет. Вы­вод АЭС из экс­плуа­та­ции, де­мон­таж ре­ак­то­ра и ре­куль­ти­ва­ция её пло­щад­ки до со­стоя­ния «зе­лё­ной лу­жай­ки» – слож­ное и до­ро­го­стоя­щее ор­га­ни­за­ци­он­но-тех­ническое ме­ро­прия­тие, осу­ще­ст­в­ляе­мое по раз­ра­ба­ты­вае­мым в ка­ж­дом кон­крет­ном слу­чае пла­нам.

Первая в мире действующая АЭС мощностью 5000 кВт пущена в России в 1954 в г. Обнинск. В 1956 вступила в строй АЭС в Колдер-Холле в Великобритании (46 МВт), в 1957 – АЭС в Шиппингпорте в США (60 МВт). В 1974 пущена первая в мире АТЭЦ – Билибинская (Чукотский автономный окр.). Массовое строительство крупных экономичных АЭС началось во 2-й пол. 1960-х гг. Однако после аварии (1986) на Чернобыльской АЭС привлекательность ядерной энергетики заметно снизилась, а в ряде стран, имеющих достаточные собственные традиционные топливно-энергетические ресурсы или доступ к ним, строительство новых АЭС фактически прекратилось (Россия, США, Великобритания, ФРГ). В начале 21в., 11.3.2011 в Тихом океане у восточного побережья Японии в результате сильнейшего землетрясения магнитудой от 9,0 до 9,1 и последовавшего за ним цунами (высота волн достигала 40,5 м) на АЭС « Фукусима1 » (посёлок Окума, префектура Фукусима) произошла крупнейшая техногенная катастрофа – радиационная авария максимального 7-го уровня по Международной шкале ядерных событий. Удар цунами вывел из строя внешние средства электроснабжения и резервные дизельные генераторы, что явилось причиной неработоспособности всех систем нормального и аварийного охлаждения и привело к расплавлению активной зоны реакторов на энергоблоках 1, 2 и 3 в первые дни развития аварии. В декабре 2013 АЭС была официально закрыта. По состоянию на первую половину 2016 высокий уровень излучения делает невозможной работу не только людей в реакторных зданиях, но и роботов, которые из-за высокого уровня радиации выходят из строя. Планируется, что вывоз пластов почвы в специальные хранилища и её уничтожение займут 30 лет.

31 страна мира использует АЭС. На 2015 действует ок. 440 ядерных энергетических реакторов (энергоблоков) суммарной мощностью более 381 тыс. МВт (381 ГВт). Ок. 70 атомных реакторов находятся в стадии строительства. Мировым лидером по доле в общей выработке электроэнергии является Франция (второе место по установленной мощности), в которой ядерная энергетика составляет 76,9%.

Крупнейшая АЭС в мире на 2015 (по установленной мощности) – Касивадзаки-Карива (г. Касивадзаки, префектура Ниигата, Япония). В эксплуатации находятся 5 кипящих ядерных реакторов (BWR) и 2 улучшенных кипящих ядерных реактора (ABWR), суммарная мощность которых составляет 8212 МВт (8,212 ГВт).

Крупнейшая АЭС в Европе – Запорожская АЭС (г. Энергодар, Запорожская область, Украина). С 1996 работают 6 энергоблоков с реакторами типа ВВЭР-1000 суммарной мощностью 6000 МВт (6 ГВт).

Таблица 1. Крупнейшие потребители ядерной энергетики в мире
Государство Количество энергоблоков Суммарная мощность (МВт) Суммарная вырабатываемая
электроэнергия (млрд. кВт·ч/год)
США 104 101 456 863,63
Франция 58 63 130 439,74
Япония 48 42 388 263,83
Россия 34 24 643 177,39
Южная Корея 23 20 717 149,2
Китай 23 19 907 123,81
Канада 19 13 500 98,59
Украина 15 13 107 83,13
Германия 9 12 074 91,78
Великобритания 16 9373 57,92

США и Япония ведут разработки мини-АЭС, мощностью порядка 10–20 МВт для тепло- и электроснабжения отдельных производств, жилых комплексов, а в перспективе – и индивидуальных домов. Малогабаритные реакторы создаются с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества.

В России на 2015 действует 10 АЭС, на которых эксплуатируются 34 энергоблока общей мощностью 24 643 МВт (24,643 ГВт), из них 18 энергоблоков с реакторами типа ВВЭР (из них 11 энергоблоков ВВЭР-1000 и 6 энергоблоков ВВЭР-440 различных модификаций); 15 энергоблоков с канальными реакторами (11 энергоблоков с реакторами типа РБМК-1000 и 4 энергоблока с реакторами типа ЭГП-6 – Энергетический Гетерогенный Петлевой реактор с 6 петлями циркуляции теплоносителя, электрической мощностью 12 МВт); 1 энергоблок с реактором на быстрых нейтронах с натриевым охлаждением БН-600 (в процессе ввода в промышленную эксплуатацию находится 1 энергоблок БН-800). Согласно Федеральной целевой программе «Развитие атомного энергопромышленного комплекса России», к 2025 доля электроэнергии, выработанной на атомных электростанциях РФ, должна увеличиться с 17 до 25% и составить ок. 30,5 ГВт. Планируется построить 26 новых энергоблоков, 6 новых АЭС, две из которых – плавучие (табл. 2).

Таблица 2. АЭС, действующие на территории РФ
Наименование АЭС Количество энергоблоков Годы ввода в эксплуа-тацию энерго-блоков Суммарная установ-ленная мощность (МВт) Тип реактора
Балаковская АЭС (близ г. Балаково) 4 1985, 1987, 1988, 1993 4000 ВВЭР-1000
Калининская АЭС [в 125 км от Твери на берегу реки Удомля (Тверская обл.)] 4 1984, 1986, 2004, 2011 4000 ВВЭР-1000
Курская АЭС (близ г. Курчатов на левом берегу реки Сейм) 4 1976, 1979, 1983, 1985 4000 РБМК-1000
Ленинградская АЭС (близ г. Сосновый Бор) 4 в стадии строительства – 4 1973, 1975, 1979, 1981 4000 РБМК-1000 (первая в стране станция с реакторами этого типа)
Ростовская АЭС (расположена на берегу Цимлянского водохранилища, в 13,5 км от г. Волгодонск) 3 2001, 2010, 2015 3100 ВВЭР-1000
Смоленская АЭС (в 3 км от города-спутника Десногорск) 3 1982, 1985, 1990 3000 РБМК-1000
Нововоронежская АЭС (близ г. Нововоронеж) 5; (2 – выведены), в стадии строительства – 2. 1964 и 1969 (выведены), 1971, 1972, 1980 1800 ВВЭР-440;
ВВЭР-1000
Кольская АЭС (в 200 км к югу от г. Мурманск на берегу озера Имандра) 4 1973, 1974, 1981, 1984 1760 ВВЭР-440
Белоярская АЭС (близ г. Заречный) 2 1980, 2015 600
800
БН-600
БН-800
Билибинская АЭС 4 1974 (2), 1975, 1976 48 ЭГП-6

Проектируемые АЭС в РФ

С 2008 по новому проекту АЭС-2006 (проект российской атомной станции нового поколения «3+» с улучшенными технико-экономическими показателями) строится Нововоронежская АЭС-2 (близ Нововоронежской АЭС), на которой предусматривается использование реакторов ВВЭР-1200. Ведётся сооружение 2 энергоблоков общей мощностью 2400 МВт, в дальнейшем планируется построить ещё 2. Пуск первого блока (блок № 6) Нововоронежской АЭС-2 состоялся в 2016, второго блока № 7 запланирован на 2018.

Балтийская АЭС предусматривает использование реакторной установки ВВЭР-1200 мощностью 1200 МВт; энергоблоков – 2. Суммарная установленная мощность 2300 МВт. Ввод в эксплуатацию первого блока планируется в 2020. Федеральным агентством по атомной энергии России ведётся проект по созданию плавучих атомных электростанций малой мощности. Строящаяся АЭС «Академик Ломоносов» станет первой в мире плавучей атомной электростанцией. Плавучая станция может использоваться для получения электрической и тепловой энергии, а также для опреснения морской воды. В сутки она может выдавать от 40 до 240 тыс. м 2 пресной воды. Установленная электрическая мощность каждого реактора – 35 МВт. Ввод станции в эксплуатацию планируется в 2018.

Международные проекты России по атомной энергетике

23.9.2013 Россия передала Ирану в эксплуатацию АЭС «Бушер» («Бушир») , близ г. Бушир (остан Бушир); количество энергоблоков – 3 (1 построен, 2 – в стадии сооружения); тип реактора – ВВЭР-1000. АЭС «Куданкулам», близ г. Куданкулам (штат Тамилнад, Индия); количество энергоблоков – 4 (1 – в эксплуатации, 3 – в стадии сооружения); тип реактора – ВВЭР-1000. АЭС «Akkuyu», близ г. Мерсин (иль Мерсин, Турция); количество энергоблоков – 4 (в стадии сооружения); тип реактора – ВВЭР-1200; Белорусская АЭС (г. Островец, Гродненская область, Белоруссия); количество энергоблоков – 2 (в стадии сооружения); тип реактора – ВВЭР-1200. АЭС «Hanhikivi 1» (мыс Ханхикиви, область Похйойс-Похьянмаа, Финляндия); количество энергоблоков – 1 (в стадии сооружения); тип реактора – ВВЭР-1200.

Чтобы понять принцип работы и устройство ядерного реактора, нужно совершить небольшой экскурс в прошлое. Атомный реактор – это многовековая воплощенная, пусть и не до конца, мечта человечества о неисчерпаемом источнике энергии. Его древний «прародитель» — костер из сухих веток, однажды озаривший и согревший своды пещеры, где находили спасение от холода наши далекие предки. Позже люди освоили углеводороды – уголь, сланцы, нефть и природный газ.

Наступила бурная, но недолгая эпоха пара, которую сменила еще более фантастическая эпоха электричества. Города наполнялись светом, а цеха – гулом невиданных доселе машин, приводимых в движение электродвигателями. Тогда казалось, что прогресс достиг своего апогея.

Все изменилось в конце XIX века, когда французский химик Антуан Анри Беккерель совершенно случайно обнаружил, что соли урана обладают радиоактивностью. Спустя 2 года, его соотечественники Пьер Кюри и его супруга Мария Склодовская-Кюри получили из них радий и полоний, причем уровень их радиоактивности в миллионы раз превосходил показатели тория и урана.

Эстафету подхватил Эрнест Резерфорд, детально изучивший природу радиоактивных лучей. Так начинался век атома, явивший на свет свое любимое дитя – атомный реактор.

Первый ядерный реактор

«Первенец» родом из США. В декабре 1942 года дал первый ток реактор, которому досталось имя его создателя — одного из величайших физиков столетия Э. Ферми. Три года спустя в Канаде обрела жизнь ядерная установка ZEEP. «Бронза» досталась первому советскому реактору Ф-1, запущенному в конце 1946 года. Руководителем отечественного ядерного проекта стал И. В. Курчатов. Сегодня в мире успешно трудятся более 400 ядерных энергоблоков.

Типы ядерных реакторов

Их основное назначение – поддерживать контролируемую ядерную реакцию, производящую электроэнергию. На некоторых реакторах производятся изотопы. Если кратко, то они представляют собой устройства, в недрах которых одни вещества превращаются в другие с выделением большого количества тепловой энергии. Это своеобразная «печь», где вместо традиционных видов топлива «сгорают» изотопы урана – U-235, U-238 и плутоний (Pu).

В отличии, к примеру, от автомобиля, рассчитанного на несколько видов бензина, каждому виду радиоактивного топлива соответствует свой тип реактора. Их два – на медленных (с U-235) и быстрых (c U-238 и Pu) нейтронах. На большинстве АЭС установлены реакторы на медленных нейтронах. Помимо АЭС, установки «трудятся» в исследовательских центрах, на атомных субмаринах и .

Как устроен реактор

У всех реакторов примерна одна схема. Его «сердце» — активная зона. Ее можно условно сравнить с топкой обычной печки. Только вместо дров там находится ядерное топливо в виде тепловыделяющих элементов с замедлителем – ТВЭЛов. Активная зона находится внутри своеобразной капсулы — отражателе нейтронов. ТВЭЛы «омываются» теплоносителем – водой. Поскольку в «сердце» очень высокий уровень радиоактивности, его окружает надежная радиационная защита.

Операторы контролируют работу установки с помощью двух важнейших систем – регулирования цепной реакции и дистанционной системы управления. Если возникает нештатная ситуация, мгновенно срабатывает аварийная защита.

Как работает реактор

Атомное «пламя» невидимо, так как процессы происходят на уровне деления ядер. В ходе цепной реакции тяжелые ядра распадаются на более мелкие фрагменты, которые, будучи в возбужденном состоянии, становятся источниками нейтронов и прочих субатомных частиц. Но на этом процесс не заканчивается. Нейтроны продолжают «дробиться», в результате чего высвобождается большая энергия, то есть, происходит то, ради чего и строятся АЭС.

Основная задача персонала – поддержание цепной реакции с помощью управляющих стержней на постоянном, регулируемом уровне. В этом его главное отличие от атомной бомбы, где процесс ядерного распада неуправляем и протекает стремительно, в виде мощнейшего взрыва.

Что произошло на Чернобыльской АЭС

Одна из основных причин катастрофы на Чернобыльской АЭС в апреле 1986 года – грубейшее нарушение эксплуатационных правил безопасности в процессе проведения регламентных работ на 4-м энергоблоке. Тогда из активной зоны было одновременно выведено 203 графитовых стержня вместо 15, разрешенных регламентом. В итоге, начавшаяся неуправляемая цепная реакция завершилась тепловым взрывом и полным разрушением энергоблока.

Реакторы нового поколения

За последнее десятилетие Россия стала одним из лидеров мировой ядерной энергетики. На данный момент госкорпорация «Росатом» ведет строительство АЭС в 12 странах, где возводятся 34 энергоблока. Столь высокий спрос – свидетельство высокого уровня современной российской ядерной техники. На очереди — реакторы нового 4-го поколения.

«Брест»

Один из них – «Брест», разработка которого ведется в рамках проекта «Прорыв». Ныне действующие системы разомкнутого цикла работают на низкообогащенном уране, после чего остается большое количество отработанного топлива, подлежащего захоронению, что требует огромных затрат. «Брест» — реактор на быстрых нейтронах уникален замкнутым циклом.

В нем отработанное топливо после соответствующей обработки в реакторе на быстрых нейтронах опять становится полноценным топливом, которое можно загружать обратно в ту же установку.

«Брест» отличает высокий уровень безопасности. Он никогда не «рванет» даже при самой серьезной аварии, очень экономичен и экологически безопасен, поскольку повторно пользуется своим «обновленным» ураном. Его также невозможно использовать для наработки оружейного плутония, что открывает широчайшие перспективы по его экспорту.

ВВЭР-1200

ВВЭР-1200 – инновационный реактор поколения «3+» мощностью 1150 МВт. Благодаря своим уникальным техническим возможностям, он обладает практически абсолютной эксплуатационной безопасностью. Реактор в изобилии оснащен системами пассивной безопасности, которые сработают даже в отсутствии электроснабжения в автоматическом режиме.

Одна из них – система пассивного отведения тепла, которая автоматически активируется при полном обесточивании реактора. На этот случай предусмотрены аварийные гидроемкости. При аномальном падении давления в первом контуре в реактор начинается подача большого количества воды, содержащей бор, которая гасит ядерную реакцию и поглощает нейтроны.

Еще одно ноу-хау находится в нижней части защитной оболочки – «ловушка» расплава. Если все же в результате аварии активная зона «потечет», «ловушка» не позволит разрушиться защитной оболочке и предотвратит попадание радиоактивных продуктов в грунт.